--- tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: hBERTv2_new_pretrain_mrpc results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: mrpc split: validation args: mrpc metrics: - name: Accuracy type: accuracy value: 0.625 - name: F1 type: f1 value: 0.7118644067796611 --- # hBERTv2_new_pretrain_mrpc This model is a fine-tuned version of [gokuls/bert_12_layer_model_v2_complete_training_new](https://huggingface.co/gokuls/bert_12_layer_model_v2_complete_training_new) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 1.3516 - Accuracy: 0.625 - F1: 0.7119 - Combined Score: 0.6684 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------------:| | 0.6721 | 1.0 | 29 | 0.6200 | 0.6838 | 0.8122 | 0.7480 | | 0.6229 | 2.0 | 58 | 0.6098 | 0.6569 | 0.7255 | 0.6912 | | 0.5689 | 3.0 | 87 | 0.5990 | 0.7034 | 0.8118 | 0.7576 | | 0.4615 | 4.0 | 116 | 0.6689 | 0.6765 | 0.78 | 0.7282 | | 0.3475 | 5.0 | 145 | 0.8472 | 0.6054 | 0.6774 | 0.6414 | | 0.2307 | 6.0 | 174 | 0.9917 | 0.6103 | 0.6913 | 0.6508 | | 0.166 | 7.0 | 203 | 1.1149 | 0.6544 | 0.7522 | 0.7033 | | 0.1258 | 8.0 | 232 | 1.3516 | 0.625 | 0.7119 | 0.6684 | ### Framework versions - Transformers 4.29.2 - Pytorch 1.14.0a0+410ce96 - Datasets 2.12.0 - Tokenizers 0.13.3