--- language: - en tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: hBERTv2_new_pretrain_qqp results: - task: name: Text Classification type: text-classification dataset: name: GLUE QQP type: glue config: qqp split: validation args: qqp metrics: - name: Accuracy type: accuracy value: 0.7902547613158546 - name: F1 type: f1 value: 0.7136682874122096 --- # hBERTv2_new_pretrain_qqp This model is a fine-tuned version of [gokuls/bert_12_layer_model_v2_complete_training_new](https://huggingface.co/gokuls/bert_12_layer_model_v2_complete_training_new) on the GLUE QQP dataset. It achieves the following results on the evaluation set: - Loss: 0.4399 - Accuracy: 0.7903 - F1: 0.7137 - Combined Score: 0.7520 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:--------------:| | 0.5303 | 1.0 | 2843 | 0.4893 | 0.7608 | 0.6250 | 0.6929 | | 0.4677 | 2.0 | 5686 | 0.4781 | 0.7773 | 0.6831 | 0.7302 | | 0.4229 | 3.0 | 8529 | 0.4399 | 0.7903 | 0.7137 | 0.7520 | | 0.3712 | 4.0 | 11372 | 0.4426 | 0.8018 | 0.7163 | 0.7590 | | 0.3268 | 5.0 | 14215 | 0.4515 | 0.8107 | 0.7348 | 0.7728 | | 0.2925 | 6.0 | 17058 | 0.5221 | 0.8119 | 0.7227 | 0.7673 | | 0.2614 | 7.0 | 19901 | 0.4518 | 0.8058 | 0.7527 | 0.7792 | | 0.2389 | 8.0 | 22744 | 0.5231 | 0.8134 | 0.7601 | 0.7868 | ### Framework versions - Transformers 4.29.2 - Pytorch 1.14.0a0+410ce96 - Datasets 2.12.0 - Tokenizers 0.13.3