--- language: - en tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: hBERTv2_new_pretrain_w_init_48_mrpc results: - task: name: Text Classification type: text-classification dataset: name: GLUE MRPC type: glue config: mrpc split: validation args: mrpc metrics: - name: Accuracy type: accuracy value: 0.696078431372549 - name: F1 type: f1 value: 0.7912457912457912 --- # hBERTv2_new_pretrain_w_init_48_mrpc This model is a fine-tuned version of [gokuls/bert_12_layer_model_v2_complete_training_new_wt_init_48](https://huggingface.co/gokuls/bert_12_layer_model_v2_complete_training_new_wt_init_48) on the GLUE MRPC dataset. It achieves the following results on the evaluation set: - Loss: 0.5938 - Accuracy: 0.6961 - F1: 0.7912 - Combined Score: 0.7437 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------------:| | 0.6532 | 1.0 | 29 | 0.6271 | 0.6838 | 0.8072 | 0.7455 | | 0.6168 | 2.0 | 58 | 0.5971 | 0.6814 | 0.8060 | 0.7437 | | 0.5766 | 3.0 | 87 | 0.5938 | 0.6961 | 0.7912 | 0.7437 | | 0.5304 | 4.0 | 116 | 0.6174 | 0.7059 | 0.8039 | 0.7549 | | 0.4622 | 5.0 | 145 | 0.6873 | 0.6789 | 0.7753 | 0.7271 | | 0.3228 | 6.0 | 174 | 0.7267 | 0.6887 | 0.7894 | 0.7391 | | 0.2028 | 7.0 | 203 | 0.9771 | 0.7010 | 0.7875 | 0.7442 | | 0.1406 | 8.0 | 232 | 1.1768 | 0.6789 | 0.7714 | 0.7252 | ### Framework versions - Transformers 4.29.2 - Pytorch 1.14.0a0+410ce96 - Datasets 2.12.0 - Tokenizers 0.13.3