--- language: - en tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: hBERTv2_new_pretrain_w_init_48_qqp results: - task: name: Text Classification type: text-classification dataset: name: GLUE QQP type: glue config: qqp split: validation args: qqp metrics: - name: Accuracy type: accuracy value: 0.8218896858768241 - name: F1 type: f1 value: 0.7658287535364704 --- # hBERTv2_new_pretrain_w_init_48_qqp This model is a fine-tuned version of [gokuls/bert_12_layer_model_v2_complete_training_new_wt_init_48](https://huggingface.co/gokuls/bert_12_layer_model_v2_complete_training_new_wt_init_48) on the GLUE QQP dataset. It achieves the following results on the evaluation set: - Loss: 0.4082 - Accuracy: 0.8219 - F1: 0.7658 - Combined Score: 0.7939 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:--------------:| | 0.5585 | 1.0 | 2843 | 0.5073 | 0.7522 | 0.6429 | 0.6976 | | 0.4735 | 2.0 | 5686 | 0.4584 | 0.7848 | 0.6963 | 0.7405 | | 0.4044 | 3.0 | 8529 | 0.4140 | 0.8074 | 0.7234 | 0.7654 | | 0.3583 | 4.0 | 11372 | 0.4206 | 0.8058 | 0.7602 | 0.7830 | | 0.3271 | 5.0 | 14215 | 0.4082 | 0.8219 | 0.7658 | 0.7939 | | 0.2987 | 6.0 | 17058 | 0.4203 | 0.8177 | 0.7666 | 0.7921 | | 0.3287 | 7.0 | 19901 | 0.4641 | 0.8124 | 0.7209 | 0.7667 | | 0.3594 | 8.0 | 22744 | 0.4493 | 0.8010 | 0.7246 | 0.7628 | | 0.3729 | 9.0 | 25587 | 0.4443 | 0.8047 | 0.7388 | 0.7718 | | 0.3314 | 10.0 | 28430 | 0.4196 | 0.8132 | 0.7411 | 0.7771 | ### Framework versions - Transformers 4.29.2 - Pytorch 1.14.0a0+410ce96 - Datasets 2.12.0 - Tokenizers 0.13.3