--- base_model: gokuls/bert_12_layer_model_v1_complete_training_new_48 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy model-index: - name: hbertv1-emotion-intermediate_KD_new results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: Accuracy type: accuracy value: 0.8875 --- # hbertv1-emotion-intermediate_KD_new This model is a fine-tuned version of [gokuls/bert_12_layer_model_v1_complete_training_new_48](https://huggingface.co/gokuls/bert_12_layer_model_v1_complete_training_new_48) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 1.5135 - Accuracy: 0.8875 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 33 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 3.5702 | 1.0 | 250 | 2.3579 | 0.7245 | | 2.149 | 2.0 | 500 | 1.8353 | 0.8445 | | 1.8068 | 3.0 | 750 | 1.6314 | 0.868 | | 1.639 | 4.0 | 1000 | 1.5135 | 0.8875 | | 1.5325 | 5.0 | 1250 | 1.4804 | 0.87 | | 1.4672 | 6.0 | 1500 | 1.5219 | 0.869 | | 1.3918 | 7.0 | 1750 | 1.4353 | 0.877 | | 1.4349 | 8.0 | 2000 | 1.4497 | 0.8845 | | 1.3062 | 9.0 | 2250 | 1.4030 | 0.8855 | ### Framework versions - Transformers 4.35.2 - Pytorch 1.14.0a0+410ce96 - Datasets 2.15.0 - Tokenizers 0.15.0