Edit model card

hbertv1-emotion-logit_KD-tiny

This model is a fine-tuned version of gokuls/model_v1_complete_training_wt_init_48_tiny_freeze_new on the emotion dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4386
  • Accuracy: 0.8995

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 33
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.9341 1.0 250 2.0281 0.6225
1.5579 2.0 500 1.0162 0.812
0.9088 3.0 750 0.6563 0.8705
0.6557 4.0 1000 0.5484 0.879
0.538 5.0 1250 0.4913 0.8865
0.4524 6.0 1500 0.4836 0.888
0.4072 7.0 1750 0.4416 0.896
0.3797 8.0 2000 0.4346 0.8905
0.3426 9.0 2250 0.4386 0.8995
0.3183 10.0 2500 0.4602 0.896
0.2911 11.0 2750 0.4296 0.8945
0.2807 12.0 3000 0.4442 0.896
0.2609 13.0 3250 0.4513 0.894
0.249 14.0 3500 0.4612 0.8975

Framework versions

  • Transformers 4.35.2
  • Pytorch 1.14.0a0+410ce96
  • Datasets 2.15.0
  • Tokenizers 0.15.0
Downloads last month
6
Safetensors
Model size
4.44M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for gokuls/hbertv1-emotion-logit_KD-tiny

Dataset used to train gokuls/hbertv1-emotion-logit_KD-tiny

Evaluation results