gokuls's picture
End of training
aa32a31
metadata
base_model: gokuls/model_v1_complete_training_wt_init_48_tiny_freeze_new
tags:
  - generated_from_trainer
datasets:
  - emotion
metrics:
  - accuracy
model-index:
  - name: hbertv1-emotion-logit_KD-tiny
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: emotion
          type: emotion
          config: split
          split: validation
          args: split
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8995

hbertv1-emotion-logit_KD-tiny

This model is a fine-tuned version of gokuls/model_v1_complete_training_wt_init_48_tiny_freeze_new on the emotion dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4386
  • Accuracy: 0.8995

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 33
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.9341 1.0 250 2.0281 0.6225
1.5579 2.0 500 1.0162 0.812
0.9088 3.0 750 0.6563 0.8705
0.6557 4.0 1000 0.5484 0.879
0.538 5.0 1250 0.4913 0.8865
0.4524 6.0 1500 0.4836 0.888
0.4072 7.0 1750 0.4416 0.896
0.3797 8.0 2000 0.4346 0.8905
0.3426 9.0 2250 0.4386 0.8995
0.3183 10.0 2500 0.4602 0.896
0.2911 11.0 2750 0.4296 0.8945
0.2807 12.0 3000 0.4442 0.896
0.2609 13.0 3250 0.4513 0.894
0.249 14.0 3500 0.4612 0.8975

Framework versions

  • Transformers 4.35.2
  • Pytorch 1.14.0a0+410ce96
  • Datasets 2.15.0
  • Tokenizers 0.15.0