--- base_model: gokuls/model_v1_complete_training_wt_init_48_mini_freeze_new tags: - generated_from_trainer datasets: - massive metrics: - accuracy model-index: - name: hbertv1-massive-logit_KD-mini results: - task: name: Text Classification type: text-classification dataset: name: massive type: massive config: en-US split: validation args: en-US metrics: - name: Accuracy type: accuracy value: 0.8598130841121495 --- # hbertv1-massive-logit_KD-mini This model is a fine-tuned version of [gokuls/model_v1_complete_training_wt_init_48_mini_freeze_new](https://huggingface.co/gokuls/model_v1_complete_training_wt_init_48_mini_freeze_new) on the massive dataset. It achieves the following results on the evaluation set: - Loss: 0.4640 - Accuracy: 0.8598 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 33 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 3.5547 | 1.0 | 180 | 2.3028 | 0.4481 | | 1.9374 | 2.0 | 360 | 1.2686 | 0.6513 | | 1.2845 | 3.0 | 540 | 0.9328 | 0.7324 | | 0.9981 | 4.0 | 720 | 0.7684 | 0.7836 | | 0.8273 | 5.0 | 900 | 0.6834 | 0.7998 | | 0.7068 | 6.0 | 1080 | 0.6369 | 0.8062 | | 0.6043 | 7.0 | 1260 | 0.5804 | 0.8205 | | 0.535 | 8.0 | 1440 | 0.5475 | 0.8396 | | 0.4763 | 9.0 | 1620 | 0.5247 | 0.8396 | | 0.4245 | 10.0 | 1800 | 0.5122 | 0.8470 | | 0.3794 | 11.0 | 1980 | 0.5038 | 0.8460 | | 0.3424 | 12.0 | 2160 | 0.5057 | 0.8465 | | 0.3194 | 13.0 | 2340 | 0.4977 | 0.8485 | | 0.2897 | 14.0 | 2520 | 0.4973 | 0.8534 | | 0.2688 | 15.0 | 2700 | 0.4714 | 0.8574 | | 0.255 | 16.0 | 2880 | 0.4763 | 0.8480 | | 0.2401 | 17.0 | 3060 | 0.4856 | 0.8510 | | 0.2286 | 18.0 | 3240 | 0.4713 | 0.8578 | | 0.2138 | 19.0 | 3420 | 0.4753 | 0.8500 | | 0.2022 | 20.0 | 3600 | 0.4641 | 0.8544 | | 0.1937 | 21.0 | 3780 | 0.4640 | 0.8598 | | 0.1802 | 22.0 | 3960 | 0.4788 | 0.8505 | | 0.1719 | 23.0 | 4140 | 0.4520 | 0.8593 | | 0.17 | 24.0 | 4320 | 0.4703 | 0.8564 | | 0.159 | 25.0 | 4500 | 0.4620 | 0.8554 | | 0.1566 | 26.0 | 4680 | 0.4825 | 0.8549 | ### Framework versions - Transformers 4.35.2 - Pytorch 1.14.0a0+410ce96 - Datasets 2.15.0 - Tokenizers 0.15.0