--- base_model: gokuls/model_v1_complete_training_wt_init_48_small_freeze_new tags: - generated_from_trainer datasets: - massive metrics: - accuracy model-index: - name: hbertv1-massive-logit_KD-small results: - task: name: Text Classification type: text-classification dataset: name: massive type: massive config: en-US split: validation args: en-US metrics: - name: Accuracy type: accuracy value: 0.8735858337432366 --- # hbertv1-massive-logit_KD-small This model is a fine-tuned version of [gokuls/model_v1_complete_training_wt_init_48_small_freeze_new](https://huggingface.co/gokuls/model_v1_complete_training_wt_init_48_small_freeze_new) on the massive dataset. It achieves the following results on the evaluation set: - Loss: 0.4139 - Accuracy: 0.8736 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 33 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.2301 | 1.0 | 180 | 0.8611 | 0.7565 | | 0.8039 | 2.0 | 360 | 0.5989 | 0.8151 | | 0.5542 | 3.0 | 540 | 0.5036 | 0.8396 | | 0.4134 | 4.0 | 720 | 0.4535 | 0.8569 | | 0.3187 | 5.0 | 900 | 0.4432 | 0.8569 | | 0.251 | 6.0 | 1080 | 0.4280 | 0.8637 | | 0.2201 | 7.0 | 1260 | 0.4311 | 0.8598 | | 0.1879 | 8.0 | 1440 | 0.4443 | 0.8608 | | 0.168 | 9.0 | 1620 | 0.4136 | 0.8677 | | 0.153 | 10.0 | 1800 | 0.4286 | 0.8598 | | 0.137 | 11.0 | 1980 | 0.4148 | 0.8701 | | 0.1276 | 12.0 | 2160 | 0.4158 | 0.8711 | | 0.1196 | 13.0 | 2340 | 0.3975 | 0.8721 | | 0.1137 | 14.0 | 2520 | 0.4221 | 0.8662 | | 0.1066 | 15.0 | 2700 | 0.4085 | 0.8677 | | 0.1024 | 16.0 | 2880 | 0.4048 | 0.8687 | | 0.0995 | 17.0 | 3060 | 0.4139 | 0.8736 | | 0.0949 | 18.0 | 3240 | 0.3953 | 0.8706 | | 0.0908 | 19.0 | 3420 | 0.3984 | 0.8716 | | 0.0882 | 20.0 | 3600 | 0.4006 | 0.8701 | | 0.0864 | 21.0 | 3780 | 0.3943 | 0.8731 | | 0.0837 | 22.0 | 3960 | 0.3912 | 0.8692 | ### Framework versions - Transformers 4.35.2 - Pytorch 1.14.0a0+410ce96 - Datasets 2.15.0 - Tokenizers 0.15.0