gokuls's picture
End of training
dba2c54
metadata
base_model: gokuls/model_v1_complete_training_wt_init_48_tiny_freeze_new_ffn_2
tags:
  - generated_from_trainer
datasets:
  - massive
metrics:
  - accuracy
model-index:
  - name: hbertv1-massive-logit_KD-tiny_ffn_2
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: massive
          type: massive
          config: en-US
          split: validation
          args: en-US
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8312838170191835

hbertv1-massive-logit_KD-tiny_ffn_2

This model is a fine-tuned version of gokuls/model_v1_complete_training_wt_init_48_tiny_freeze_new_ffn_2 on the massive dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6148
  • Accuracy: 0.8313

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 33
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
4.1929 1.0 180 3.5935 0.1402
3.4611 2.0 360 3.0049 0.2941
2.9024 3.0 540 2.4730 0.3792
2.4356 4.0 720 2.0721 0.4515
2.1041 5.0 900 1.8179 0.5278
1.8564 6.0 1080 1.6004 0.6257
1.6676 7.0 1260 1.4500 0.6596
1.5135 8.0 1440 1.3147 0.6995
1.3906 9.0 1620 1.2211 0.7147
1.2811 10.0 1800 1.1393 0.7314
1.1937 11.0 1980 1.0803 0.7304
1.112 12.0 2160 1.0267 0.7467
1.0488 13.0 2340 0.9716 0.7570
0.983 14.0 2520 0.9306 0.7649
0.9294 15.0 2700 0.8892 0.7767
0.8909 16.0 2880 0.8578 0.7885
0.8436 17.0 3060 0.8270 0.7909
0.8078 18.0 3240 0.8201 0.7964
0.7777 19.0 3420 0.7934 0.8028
0.7433 20.0 3600 0.7792 0.8037
0.7121 21.0 3780 0.7504 0.8082
0.6896 22.0 3960 0.7433 0.8091
0.6592 23.0 4140 0.7200 0.8160
0.6389 24.0 4320 0.7177 0.8096
0.6175 25.0 4500 0.7039 0.8136
0.6024 26.0 4680 0.6928 0.8180
0.5835 27.0 4860 0.6940 0.8170
0.5673 28.0 5040 0.6787 0.8136
0.5523 29.0 5220 0.6680 0.8229
0.5445 30.0 5400 0.6599 0.8234
0.5319 31.0 5580 0.6634 0.8214
0.5196 32.0 5760 0.6549 0.8259
0.504 33.0 5940 0.6506 0.8239
0.4993 34.0 6120 0.6518 0.8249
0.4941 35.0 6300 0.6388 0.8239
0.4823 36.0 6480 0.6317 0.8278
0.4734 37.0 6660 0.6327 0.8288
0.4609 38.0 6840 0.6312 0.8239
0.4617 39.0 7020 0.6279 0.8288
0.4529 40.0 7200 0.6255 0.8273
0.4491 41.0 7380 0.6173 0.8288
0.4419 42.0 7560 0.6148 0.8313
0.4378 43.0 7740 0.6208 0.8298
0.4362 44.0 7920 0.6140 0.8288
0.432 45.0 8100 0.6152 0.8308
0.4276 46.0 8280 0.6150 0.8288
0.4263 47.0 8460 0.6118 0.8308

Framework versions

  • Transformers 4.35.2
  • Pytorch 1.14.0a0+410ce96
  • Datasets 2.15.0
  • Tokenizers 0.15.0