|
--- |
|
base_model: gokuls/model_v1_complete_training_wt_init_48_tiny_freeze_new_ffn_2 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- massive |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: hbertv1-massive-logit_KD-tiny_ffn_2 |
|
results: |
|
- task: |
|
name: Text Classification |
|
type: text-classification |
|
dataset: |
|
name: massive |
|
type: massive |
|
config: en-US |
|
split: validation |
|
args: en-US |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.8312838170191835 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# hbertv1-massive-logit_KD-tiny_ffn_2 |
|
|
|
This model is a fine-tuned version of [gokuls/model_v1_complete_training_wt_init_48_tiny_freeze_new_ffn_2](https://huggingface.co/gokuls/model_v1_complete_training_wt_init_48_tiny_freeze_new_ffn_2) on the massive dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.6148 |
|
- Accuracy: 0.8313 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 64 |
|
- eval_batch_size: 64 |
|
- seed: 33 |
|
- distributed_type: multi-GPU |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 50 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| 4.1929 | 1.0 | 180 | 3.5935 | 0.1402 | |
|
| 3.4611 | 2.0 | 360 | 3.0049 | 0.2941 | |
|
| 2.9024 | 3.0 | 540 | 2.4730 | 0.3792 | |
|
| 2.4356 | 4.0 | 720 | 2.0721 | 0.4515 | |
|
| 2.1041 | 5.0 | 900 | 1.8179 | 0.5278 | |
|
| 1.8564 | 6.0 | 1080 | 1.6004 | 0.6257 | |
|
| 1.6676 | 7.0 | 1260 | 1.4500 | 0.6596 | |
|
| 1.5135 | 8.0 | 1440 | 1.3147 | 0.6995 | |
|
| 1.3906 | 9.0 | 1620 | 1.2211 | 0.7147 | |
|
| 1.2811 | 10.0 | 1800 | 1.1393 | 0.7314 | |
|
| 1.1937 | 11.0 | 1980 | 1.0803 | 0.7304 | |
|
| 1.112 | 12.0 | 2160 | 1.0267 | 0.7467 | |
|
| 1.0488 | 13.0 | 2340 | 0.9716 | 0.7570 | |
|
| 0.983 | 14.0 | 2520 | 0.9306 | 0.7649 | |
|
| 0.9294 | 15.0 | 2700 | 0.8892 | 0.7767 | |
|
| 0.8909 | 16.0 | 2880 | 0.8578 | 0.7885 | |
|
| 0.8436 | 17.0 | 3060 | 0.8270 | 0.7909 | |
|
| 0.8078 | 18.0 | 3240 | 0.8201 | 0.7964 | |
|
| 0.7777 | 19.0 | 3420 | 0.7934 | 0.8028 | |
|
| 0.7433 | 20.0 | 3600 | 0.7792 | 0.8037 | |
|
| 0.7121 | 21.0 | 3780 | 0.7504 | 0.8082 | |
|
| 0.6896 | 22.0 | 3960 | 0.7433 | 0.8091 | |
|
| 0.6592 | 23.0 | 4140 | 0.7200 | 0.8160 | |
|
| 0.6389 | 24.0 | 4320 | 0.7177 | 0.8096 | |
|
| 0.6175 | 25.0 | 4500 | 0.7039 | 0.8136 | |
|
| 0.6024 | 26.0 | 4680 | 0.6928 | 0.8180 | |
|
| 0.5835 | 27.0 | 4860 | 0.6940 | 0.8170 | |
|
| 0.5673 | 28.0 | 5040 | 0.6787 | 0.8136 | |
|
| 0.5523 | 29.0 | 5220 | 0.6680 | 0.8229 | |
|
| 0.5445 | 30.0 | 5400 | 0.6599 | 0.8234 | |
|
| 0.5319 | 31.0 | 5580 | 0.6634 | 0.8214 | |
|
| 0.5196 | 32.0 | 5760 | 0.6549 | 0.8259 | |
|
| 0.504 | 33.0 | 5940 | 0.6506 | 0.8239 | |
|
| 0.4993 | 34.0 | 6120 | 0.6518 | 0.8249 | |
|
| 0.4941 | 35.0 | 6300 | 0.6388 | 0.8239 | |
|
| 0.4823 | 36.0 | 6480 | 0.6317 | 0.8278 | |
|
| 0.4734 | 37.0 | 6660 | 0.6327 | 0.8288 | |
|
| 0.4609 | 38.0 | 6840 | 0.6312 | 0.8239 | |
|
| 0.4617 | 39.0 | 7020 | 0.6279 | 0.8288 | |
|
| 0.4529 | 40.0 | 7200 | 0.6255 | 0.8273 | |
|
| 0.4491 | 41.0 | 7380 | 0.6173 | 0.8288 | |
|
| 0.4419 | 42.0 | 7560 | 0.6148 | 0.8313 | |
|
| 0.4378 | 43.0 | 7740 | 0.6208 | 0.8298 | |
|
| 0.4362 | 44.0 | 7920 | 0.6140 | 0.8288 | |
|
| 0.432 | 45.0 | 8100 | 0.6152 | 0.8308 | |
|
| 0.4276 | 46.0 | 8280 | 0.6150 | 0.8288 | |
|
| 0.4263 | 47.0 | 8460 | 0.6118 | 0.8308 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.2 |
|
- Pytorch 1.14.0a0+410ce96 |
|
- Datasets 2.15.0 |
|
- Tokenizers 0.15.0 |
|
|