--- license: apache-2.0 base_model: facebook/wav2vec2-base-960h tags: - generated_from_trainer metrics: - accuracy model-index: - name: wav2vec2-base-960h-fsc results: [] --- # wav2vec2-base-960h-fsc This model is a fine-tuned version of [facebook/wav2vec2-base-960h](https://huggingface.co/facebook/wav2vec2-base-960h) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0218 - Accuracy: 0.9947 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 192 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:--------:| | No log | 0.9959 | 120 | 0.3651 | 0.9380 | | No log | 2.0 | 241 | 0.2352 | 0.9404 | | No log | 2.9959 | 361 | 0.4245 | 0.8684 | | No log | 4.0 | 482 | 0.0721 | 0.9837 | | No log | 4.9959 | 602 | 0.0961 | 0.9768 | | No log | 6.0 | 723 | 0.0632 | 0.9860 | | No log | 6.9959 | 843 | 0.0498 | 0.9905 | | No log | 8.0 | 964 | 0.0715 | 0.9834 | | 0.4012 | 8.9959 | 1084 | 0.0907 | 0.9829 | | 0.4012 | 10.0 | 1205 | 0.0644 | 0.9860 | | 0.4012 | 10.9959 | 1325 | 0.0322 | 0.9921 | | 0.4012 | 12.0 | 1446 | 0.0524 | 0.9881 | | 0.4012 | 12.9959 | 1566 | 0.0450 | 0.9910 | | 0.4012 | 14.0 | 1687 | 0.0227 | 0.9942 | | 0.4012 | 14.9959 | 1807 | 0.0437 | 0.9908 | | 0.4012 | 16.0 | 1928 | 0.0381 | 0.9924 | | 0.1096 | 16.9959 | 2048 | 0.0218 | 0.9947 | | 0.1096 | 18.0 | 2169 | 0.0300 | 0.9934 | | 0.1096 | 18.9959 | 2289 | 0.0356 | 0.9931 | | 0.1096 | 20.0 | 2410 | 0.0380 | 0.9937 | | 0.1096 | 20.9959 | 2530 | 0.0417 | 0.9934 | | 0.1096 | 22.0 | 2651 | 0.0268 | 0.9947 | ### Framework versions - Transformers 4.43.3 - Pytorch 2.2.2+cu121 - Datasets 2.18.0 - Tokenizers 0.19.1