goldfish-models commited on
Commit
0d21ed0
1 Parent(s): 8e925dd

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +69 -0
README.md ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ---
3
+ license: apache-2.0
4
+ language:
5
+ - tir
6
+ datasets:
7
+ - allenai/nllb
8
+ - allenai/MADLAD-400
9
+ - cis-lmu/Glot500
10
+ - castorini/afriberta-corpus
11
+ - legacy-datasets/wikipedia
12
+ - csebuetnlp/xlsum
13
+ library_name: transformers
14
+ pipeline_tag: text-generation
15
+ tags:
16
+ - goldfish
17
+
18
+ ---
19
+
20
+ # tir_ethi_100mb
21
+
22
+ Goldfish is a suite of monolingual language models trained for 350 languages.
23
+ This model is the <b>Tigrinya</b> (Ge'ez script) model trained on 100MB of data, after accounting for an estimated byte premium of 1.76; content-matched text in Tigrinya takes on average 1.76x as many UTF-8 bytes to encode as English.
24
+ The Goldfish models are trained primarily for comparability across languages and for low-resource languages; Goldfish performance for high-resource languages is not designed to be comparable with modern large language models (LLMs).
25
+
26
+ Note: tir_ethi is an [individual language](https://iso639-3.sil.org/code_tables/639/data) code. It is not contained in any macrolanguage codes contained in Goldfish (for script ethi).
27
+
28
+ All training and hyperparameter details are in our paper, [Goldfish: Monolingual Language Models for 350 Languages (Chang et al., 2024)](https://github.com/tylerachang/goldfish/blob/main/goldfish_paper_20240815.pdf).
29
+
30
+ Training code and sample usage: https://github.com/tylerachang/goldfish
31
+
32
+ Sample usage also in this Google Colab: [link](https://colab.research.google.com/drive/1rHFpnQsyXJ32ONwCosWZ7frjOYjbGCXG?usp=sharing)
33
+
34
+ ## Model details:
35
+
36
+ To access all Goldfish model details programmatically, see https://github.com/tylerachang/goldfish/model_details.json.
37
+ All models are trained with a [CLS] (same as [BOS]) token prepended, and a [SEP] (same as [EOS]) token separating sequences.
38
+ Details for this model specifically:
39
+
40
+ * Architecture: gpt2
41
+ * Parameters: 124770816
42
+ * Maximum sequence length: 512 tokens
43
+ * Training text data (raw): 176.30MB
44
+ * Training text data (byte premium scaled): 100.005MB
45
+ * Training tokens: 22338048 (x10 epochs)
46
+ * Vocabulary size: 50000
47
+ * Compute cost: 1.14032546021376e+17 FLOPs or ~10.8 NVIDIA A6000 GPU hours
48
+
49
+ Training datasets (percentages prior to deduplication):
50
+ * 50.52196%: [Tigrinya Language Modeling Dataset](https://zenodo.org/record/5139094)
51
+ * 20.99445%: [NLLB (CommonCrawl and ParaCrawl)](https://huggingface.co/datasets/allenai/nllb)
52
+ * 13.46805%: [MADLAD-400 (CommonCrawl)](https://huggingface.co/datasets/allenai/MADLAD-400)
53
+ * 10.08565%: [Glot500](https://huggingface.co/datasets/cis-lmu/Glot500), including [AfriBERTa](https://huggingface.co/datasets/castorini/afriberta-corpus), [HornMT](https://github.com/asmelashteka/HornMT), [Wortschatz Leipzig Data](https://wortschatz.uni-leipzig.de/en/download), [MoT](https://github.com/bltlab/mot), [Parallel Corpora for Ethiopian Languages](https://github.com/AAUThematic4LT/Parallel-Corpora-for-Ethiopian-Languages), [TICO](https://tico-19.github.io/), [Wikipedia Hugging Face](https://huggingface.co/datasets/legacy-datasets/wikipedia), [XLSum](https://huggingface.co/datasets/csebuetnlp/xlsum)
54
+ * 4.86709%: [AfriBERTa](https://huggingface.co/datasets/castorini/afriberta-corpus)
55
+ * 0.06280%: [Wikipedia 2023/08](https://dumps.wikimedia.org/)
56
+
57
+
58
+ ## Citation
59
+
60
+ If you use this model, please cite:
61
+
62
+ ```
63
+ @article{chang-etal-2024-goldfish,
64
+ title={Goldfish: Monolingual Language Models for 350 Languages},
65
+ author={Chang, Tyler A. and Arnett, Catherine and Tu, Zhuowen and Bergen, Benjamin K.},
66
+ journal={Preprint},
67
+ year={2024},
68
+ }
69
+ ```