File size: 4,473 Bytes
4571262 c8712ae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
--
https://colab.research.google.com/drive/1c7oHSEemh8Ih4ExRd4bQ6WHADVY-Mfj1#scrollTo=ADmdVbV93wpy
-
base_model: silma-ai/SILMA-9B-Instruct-v1.0
language:
- ar
- en
library_name: transformers
license: gemma
pipeline_tag: text-generation
tags:
- conversational
- llama-cpp
- gguf-my-repo
extra_gated_button_content: Acknowledge license
model-index:
- name: SILMA-9B-Instruct-v1.0
results:
- task:
type: text-generation
dataset:
name: MMLU (Arabic)
type: OALL/Arabic_MMLU
metrics:
- type: loglikelihood_acc_norm
value: 52.55
name: acc_norm
source:
url: https://huggingface.co/spaces/OALL/Open-Arabic-LLM-Leaderboard
name: Open Arabic LLM Leaderboard
- task:
type: text-generation
dataset:
name: AlGhafa
type: OALL/AlGhafa-Arabic-LLM-Benchmark-Native
metrics:
- type: loglikelihood_acc_norm
value: 71.85
name: acc_norm
source:
url: https://huggingface.co/spaces/OALL/Open-Arabic-LLM-Leaderboard
name: Open Arabic LLM Leaderboard
- task:
type: text-generation
dataset:
name: ARC Challenge (Arabic)
type: OALL/AlGhafa-Arabic-LLM-Benchmark-Translated
metrics:
- type: loglikelihood_acc_norm
value: 78.19
name: acc_norm
- type: loglikelihood_acc_norm
value: 86
name: acc_norm
- type: loglikelihood_acc_norm
value: 64.05
name: acc_norm
- type: loglikelihood_acc_norm
value: 78.89
name: acc_norm
- type: loglikelihood_acc_norm
value: 47.64
name: acc_norm
- type: loglikelihood_acc_norm
value: 72.93
name: acc_norm
- type: loglikelihood_acc_norm
value: 71.96
name: acc_norm
- type: loglikelihood_acc_norm
value: 75.55
name: acc_norm
- type: loglikelihood_acc_norm
value: 91.26
name: acc_norm
- type: loglikelihood_acc_norm
value: 67.59
name: acc_norm
source:
url: https://huggingface.co/spaces/OALL/Open-Arabic-LLM-Leaderboard
name: Open Arabic LLM Leaderboard
- task:
type: text-generation
dataset:
name: ACVA
type: OALL/ACVA
metrics:
- type: loglikelihood_acc_norm
value: 78.89
name: acc_norm
source:
url: https://huggingface.co/spaces/OALL/Open-Arabic-LLM-Leaderboard
name: Open Arabic LLM Leaderboard
- task:
type: text-generation
dataset:
name: Arabic_EXAMS
type: OALL/Arabic_EXAMS
metrics:
- type: loglikelihood_acc_norm
value: 51.4
name: acc_norm
source:
url: https://huggingface.co/spaces/OALL/Open-Arabic-LLM-Leaderboard
name: Open Arabic LLM Leaderboard
---
# goodasdgood/SILMA-9B-Instruct-v1.0-IQ4_NL-GGUF
This model was converted to GGUF format from [`silma-ai/SILMA-9B-Instruct-v1.0`](https://huggingface.co/silma-ai/SILMA-9B-Instruct-v1.0) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/silma-ai/SILMA-9B-Instruct-v1.0) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo goodasdgood/SILMA-9B-Instruct-v1.0-IQ4_NL-GGUF --hf-file silma-9b-instruct-v1.0-iq4_nl-imat.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo goodasdgood/SILMA-9B-Instruct-v1.0-IQ4_NL-GGUF --hf-file silma-9b-instruct-v1.0-iq4_nl-imat.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo goodasdgood/SILMA-9B-Instruct-v1.0-IQ4_NL-GGUF --hf-file silma-9b-instruct-v1.0-iq4_nl-imat.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo goodasdgood/SILMA-9B-Instruct-v1.0-IQ4_NL-GGUF --hf-file silma-9b-instruct-v1.0-iq4_nl-imat.gguf -c 2048
```
|