First draft of model card
Browse files
README.md
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- image-classification
|
5 |
+
datasets:
|
6 |
+
- imagenet
|
7 |
+
- imagenet-21k
|
8 |
+
---
|
9 |
+
|
10 |
+
# CANINE-s (CANINE pre-trained with subword loss)
|
11 |
+
|
12 |
+
TODO
|
13 |
+
|
14 |
+
Disclaimer: The team releasing CANINE did not write a model card for this model so this model card has been written by the Hugging Face team.
|
15 |
+
|
16 |
+
## Model description
|
17 |
+
|
18 |
+
TODO
|
19 |
+
|
20 |
+
## Intended uses & limitations
|
21 |
+
|
22 |
+
TODO
|
23 |
+
|
24 |
+
### How to use
|
25 |
+
|
26 |
+
Here is how to use this model:
|
27 |
+
|
28 |
+
```python
|
29 |
+
from transformers import CanineTokenizer, CanineModel
|
30 |
+
|
31 |
+
model = CanineModel.from_pretrained('google/canine-s')
|
32 |
+
tokenizer = CanineTokenizer.from_pretrained('google/canine-s')
|
33 |
+
|
34 |
+
inputs = ["Life is like a box of chocolates.", "You never know what you gonna get."]
|
35 |
+
encoding = tokenizer(inputs, padding="longest", truncation=True, return_tensors="pt")
|
36 |
+
|
37 |
+
outputs = model(**encoding) # forward pass
|
38 |
+
pooled_output = outputs.pooler_output
|
39 |
+
sequence_output = outputs.last_hidden_state
|
40 |
+
```
|
41 |
+
|
42 |
+
## Training data
|
43 |
+
|
44 |
+
TODO
|
45 |
+
|
46 |
+
## Training procedure
|
47 |
+
|
48 |
+
### Preprocessing
|
49 |
+
|
50 |
+
TODO
|
51 |
+
|
52 |
+
### Pretraining
|
53 |
+
|
54 |
+
TODO
|
55 |
+
|
56 |
+
## Evaluation results
|
57 |
+
|
58 |
+
TODO
|
59 |
+
|
60 |
+
### BibTeX entry and citation info
|
61 |
+
|
62 |
+
```bibtex
|
63 |
+
@article{DBLP:journals/corr/abs-2103-06874,
|
64 |
+
author = {Jonathan H. Clark and
|
65 |
+
Dan Garrette and
|
66 |
+
Iulia Turc and
|
67 |
+
John Wieting},
|
68 |
+
title = {{CANINE:} Pre-training an Efficient Tokenization-Free Encoder for
|
69 |
+
Language Representation},
|
70 |
+
journal = {CoRR},
|
71 |
+
volume = {abs/2103.06874},
|
72 |
+
year = {2021},
|
73 |
+
url = {https://arxiv.org/abs/2103.06874},
|
74 |
+
archivePrefix = {arXiv},
|
75 |
+
eprint = {2103.06874},
|
76 |
+
timestamp = {Tue, 16 Mar 2021 11:26:59 +0100},
|
77 |
+
biburl = {https://dblp.org/rec/journals/corr/abs-2103-06874.bib},
|
78 |
+
bibsource = {dblp computer science bibliography, https://dblp.org}
|
79 |
+
}
|
80 |
+
```
|