--- license: apache-2.0 datasets: - tals/vitaminc - SetFit/mnli - snli - fever - paws - scitail language: - en --- This is an NLI model based on T5-XXL that predicts a binary label ('1' - Entailment, '0' - No entailment). It is trained similarly to the NLI model described in the [TRUE paper (Honovich et al, 2022)](https://arxiv.org/pdf/2204.04991.pdf), but using the following datasets instead of ANLI: - SNLI ([Bowman et al., 2015](https://arxiv.org/abs/1508.05326)) - MNLI ([Williams et al., 2018](https://aclanthology.org/N18-1101.pdf)) - Fever ([Thorne et al., 2018](https://aclanthology.org/N18-1074.pdf)) - Scitail ([Khot et al., 2018](http://ai2-website.s3.amazonaws.com/publications/scitail-aaai-2018_cameraready.pdf)) - PAWS ([Zhang et al. 2019](https://arxiv.org/abs/1904.01130)) - VitaminC ([Schuster et al., 2021](https://arxiv.org/pdf/2103.08541.pdf)) The input format for the model is: "premise: PREMISE_TEXT hypothesis: HYPOTHESIS_TEXT".