File size: 10,294 Bytes
0302bf4 6225f84 3fd971c 6225f84 eedf71a 436f19e 6225f84 1deaa30 6225f84 1deaa30 6225f84 21354e3 68a6ac1 6225f84 bb0fe27 6225f84 bb0fe27 6225f84 bb0fe27 6225f84 673a424 6225f84 673a424 6225f84 21354e3 6225f84 bb0fe27 6225f84 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 |
---
license: apache-2.0
---
# Gorilla OpenFunctions v2
💡 SoTA for open-source models. On-par with GPT-4.
🚀 Check out the [Berkeley Function Calling Leaderboard](https://gorilla.cs.berkeley.edu/leaderboard)
📣 Read more in our [OpenFunctions v2 release blog](https://gorilla.cs.berkeley.edu/blogs/7_open_functions_v2.html) and [Berkeley Function Calling Leaderboard blog](https://gorilla.cs.berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html) \
🟢 Check out Quantized GGUF models in [gorilla-llm/gorilla-openfunctions-v2-gguf](https://huggingface.co/gorilla-llm/gorilla-openfunctions-v2-gguf)
## Introduction
Gorilla OpenFunctions extends Large Language Model(LLM) Chat Completion feature to formulate
executable APIs call given natural language instructions and API context. With OpenFunctions v2,
we now support:
1. Multiple functions - choose betwen functions
2. Parallel functions - call the same function `N` time with different parameter values
3. Multiple & parallel - both of the above in a single chatcompletion call (one generation)
4. Relevance detection - when chatting, chat. When asked for function, returns a function
5. Python - supports `string, number, boolean, list, tuple, dict` parameter datatypes and `Any` for those not natively supported.
6. JAVA - support for `byte, short, int, float, double, long, boolean, char, Array, ArrayList, Set, HashMap, Hashtable, Queue, Stack, and Any` datatypes.
7. JavaScript - support for `String, Number, Bigint, Boolean, dict (object), Array, Date, and Any` datatypes.
8. REST - native REST support
## Performance
| Model | Overall Accuracy* |
|---|---|
|GPT-4-0125-Preview | 85.12% |
|Gorilla-openfunctions-v2 | 83.67% |
|GPT-3.5-turbo | 82.23% |
|Mistral-medium | 79.70% |
|Nexusflow Raven-v2 | 55.72% |
|GPT-4-0613 | 54.16% |
*: Overall Accuracy is defined in [Berkeley Function Calling Leaderboard blog](https://gorilla.cs.berkeley.edu/leaderboard), read more details if you are interested!
## Models Available
|Model | Functionality|
|---|---|
|gorilla-openfunctions-v2 | Multiple, parallel, multiple & parallel, relevance detection, Python + JAVA + JS + REST|
|gorilla-openfunctions-v1 | Parallel functions, and can choose between functions|
|gorilla-openfunctions-v0 | Given a function, and user intent, returns properly formatted json with the right arguments|
All of our models are hosted on our Huggingface UC Berkeley gorilla-llm org: [gorilla-openfunctions-v2](https://huggingface.co/gorilla-llm/gorilla-openfunctions-v2), [gorilla-openfunctions-v1](https://huggingface.co/gorilla-llm/gorilla-openfunctions-v1), and [gorilla-openfunctions-v0](https://huggingface.co/gorilla-llm/gorilla-openfunctions-v0).
## Training
Gorilla Openfunctions v2 is a 7B parameter model, and is built on top of the [deepseek coder](https://huggingface.co/deepseek-ai/deepseek-coder-7b-instruct-v1.5) LLM. Check out [openfunctions-v2 blog](https://gorilla.cs.berkeley.edu/blogs/7_open_functions_v2.html) to learn more about the data composition and some insights into the training process.
## Example Usage (Hosted)
Please reference `README.md` in https://github.com/ShishirPatil/gorilla/tree/main/openfunctions for file dependencies and used utils.
1. OpenFunctions is compatible with OpenAI Functions
```bash
!pip install openai==0.28.1
```
2. Point to Gorilla hosted servers
```python
import openai
def get_gorilla_response(prompt="Call me an Uber ride type \"Plus\" in Berkeley at zipcode 94704 in 10 minutes", model="gorilla-openfunctions-v0", functions=[]):
openai.api_key = "EMPTY"
openai.api_base = "http://luigi.millennium.berkeley.edu:8000/v1"
try:
completion = openai.ChatCompletion.create(
model="gorilla-openfunctions-v2",
temperature=0.0,
messages=[{"role": "user", "content": prompt}],
functions=functions,
)
return completion.choices[0]
except Exception as e:
print(e, model, prompt)
```
3. Pass the user argument and set of functions, Gorilla OpenFunctions returns a fully formatted json
```python
query = "What's the weather like in the two cities of Boston and San Francisco?"
functions = [
{
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA",
},
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
},
"required": ["location"],
},
}
]
get_gorilla_response(query, functions=functions)
```
4. Expected output **NEW**
Gorilla returns a readily accessible string **AND** Open-AI compatible JSON.
```python
{
"index": 0,
"message": {
"role": "assistant",
"content": "get_current_weather(location='Boston, MA'), get_current_weather(location='San Francisco, CA')",
"function_call": [
{
"name": "get_current_weather",
"arguments": {
"location": "Boston, MA"
}
},
{
"name": "get_current_weather",
"arguments": {
"location": "San Francisco, CA"
}
}
]
},
"finish_reason": "stop"
}
```
We have retained the string functionality that our community loved from OpenFunctions v1 `get_current_weather(location='Boston, MA'), get_current_weather(location='San Francisco, CA')` above. And Notice the `function_call` key in the JSON to be OpenAI compatible.
This is possible in OpenFunctions v2, because we ensure that the output includes the name of the argument and not just the value. This enables us to parse the output into a JSON. In those scenarios where the output is not parsable into JSON, we will always return the function call string.
### End to End Example
Run the example code in `[inference_hosted.py](https://github.com/ShishirPatil/gorilla/tree/main/openfunctions)` to see how the model works.
```bash
python inference_hosted.py
```
Expected Output:
```bash
(.py3) shishir@dhcp-132-64:~/Work/Gorilla/openfunctions/$ python inference_hosted.py
--------------------
Function call strings(s): get_current_weather(location='Boston, MA'), get_current_weather(location='San Francisco, CA')
--------------------
OpenAI compatible `function_call`: [<OpenAIObject at 0x1139ba890> JSON:
{
"name": "get_current_weather",
"arguments":
{
"location": "Boston, MA"
}
}, <OpenAIObject at 0x1139ba930> JSON: {
"name": "get_current_weather",
"arguments":
{
"location": "San Francisco, CA"
}
}]
```
## Running OpenFunctions Locally
If you want to Run OpenFunctions locally, here is the prompt format that we used:
```python
def get_prompt(user_query: str, functions: list = []) -> str:
"""
Generates a conversation prompt based on the user's query and a list of functions.
Parameters:
- user_query (str): The user's query.
- functions (list): A list of functions to include in the prompt.
Returns:
- str: The formatted conversation prompt.
"""
system = "You are an AI programming assistant, utilizing the Gorilla LLM model, developed by Gorilla LLM, and you only answer questions related to computer science. For politically sensitive questions, security and privacy issues, and other non-computer science questions, you will refuse to answer."
if len(functions) == 0:
return f"{system}\n### Instruction: <<question>> {user_query}\n### Response: "
functions_string = json.dumps(functions)
return f"{system}\n### Instruction: <<function>>{functions_string}\n<<question>>{user_query}\n### Response: "
```
Further, here is how we format the response:
Install the dependencies with:
```bash
pip3 install tree_sitter
git clone https://github.com/tree-sitter/tree-sitter-java.git
git clone https://github.com/tree-sitter/tree-sitter-javascript.git
```
And you can use the following code to format the response:
```python
from openfunctions_utils import strip_function_calls, parse_function_call
def format_response(response: str):
"""
Formats the response from the OpenFunctions model.
Parameters:
- response (str): The response generated by the LLM.
Returns:
- str: The formatted response.
- dict: The function call(s) extracted from the response.
"""
function_call_dicts = None
try:
response = strip_function_calls(response)
# Parallel function calls returned as a str, list[dict]
if len(response) > 1:
function_call_dicts = []
for function_call in response:
function_call_dicts.append(parse_function_call(function_call))
response = ", ".join(response)
# Single function call returned as a str, dict
else:
function_call_dicts = parse_function_call(response[0])
response = response[0]
except Exception as e:
# Just faithfully return the generated response str to the user
pass
return response, function_call_dicts
```
In the current directory, run the example code in `inference_local.py` to see how the model works.
```bash
python inference_local.py
```
**Note:** Use the `get_prompt` and `format_response` only if you are hosting it Locally. If you are using the Berkeley hosted models through the Chat-completion API, we do this in the backend, so you don't have to do this. The model is supported in Hugging Face 🤗 Transformers and can be run up locally:
## License
Gorilla OpenFunctions v2 is distributed under the Apache 2.0 license. This software incorporates elements from the Deepseek model. Consequently, the licensing of Gorilla OpenFunctions v2 adheres to the Apache 2.0 license, with additional terms as outlined in [Appendix A](https://github.com/deepseek-ai/DeepSeek-LLM/blob/6712a86bfb7dd25c73383c5ad2eb7a8db540258b/LICENSE-MODEL) of the Deepseek license.
## Contributing
Gorilla is an open source effort from UC Berkeley and we welcome contributors.
Please email us your comments, criticism, and questions. More information about the project can be found at [https://gorilla.cs.berkeley.edu/](https://gorilla.cs.berkeley.edu/)
|