gorkemgoknar
commited on
Commit
•
bdfd237
1
Parent(s):
2f7b134
Delete model.py
Browse files
model.py
DELETED
@@ -1,500 +0,0 @@
|
|
1 |
-
from transformers import AutoConfig
|
2 |
-
from transformers import GPT2Tokenizer, GPT2LMHeadModel
|
3 |
-
|
4 |
-
from utils import SPECIAL_TOKENS, build_input_from_segments, add_special_tokens_
|
5 |
-
from utils import get_dataset, download_pretrained_model
|
6 |
-
|
7 |
-
import timeit
|
8 |
-
|
9 |
-
import logging
|
10 |
-
logging.basicConfig(format='%(asctime)s: %(message)s',level=logging.INFO)
|
11 |
-
logger = logging.getLogger(__file__)
|
12 |
-
|
13 |
-
import random
|
14 |
-
|
15 |
-
from itertools import chain
|
16 |
-
from pprint import pformat
|
17 |
-
#import warnings
|
18 |
-
|
19 |
-
import torch
|
20 |
-
import torch.nn.functional as F
|
21 |
-
|
22 |
-
import boto3
|
23 |
-
import os
|
24 |
-
import tarfile
|
25 |
-
import io
|
26 |
-
import base64
|
27 |
-
import json
|
28 |
-
import re
|
29 |
-
|
30 |
-
from types import SimpleNamespace
|
31 |
-
|
32 |
-
import warnings
|
33 |
-
warnings.simplefilter(action='ignore', category=FutureWarning)
|
34 |
-
|
35 |
-
print("Loading Model.py module...")
|
36 |
-
|
37 |
-
s3 = boto3.client('s3')
|
38 |
-
|
39 |
-
|
40 |
-
def is_list_of_strings(lst):
|
41 |
-
if lst and isinstance(lst, list):
|
42 |
-
return all(isinstance(elem, str) for elem in lst)
|
43 |
-
else:
|
44 |
-
return False
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
class ServerlessModel:
|
49 |
-
def __init__(self, model_path=None, s3_bucket=None, file_prefix=None, efs_path=None):
|
50 |
-
#logging.basicConfig(level=logging.INFO)
|
51 |
-
#logger = logging.getLogger(__file__)
|
52 |
-
print("Trying to init model")
|
53 |
-
|
54 |
-
self.model = None
|
55 |
-
self.tokenizer = None
|
56 |
-
self.dataset = None
|
57 |
-
|
58 |
-
if s3_bucket is None:
|
59 |
-
if model_path is not None and efs_path is None :
|
60 |
-
print("Loading model from local..")
|
61 |
-
self.model, self.tokenizer, self.dataset = self.from_pretrained_local_path(model_path, file_prefix)
|
62 |
-
logging.debug("Done loading")
|
63 |
-
else:
|
64 |
-
##Load model from EFS, with config and tokenizer from local lambda space
|
65 |
-
if model_path is not None and efs_path is not None:
|
66 |
-
print("loading model from EFS")
|
67 |
-
self.model, self.tokenizer, self.dataset = self.from_pretrained(model_path, s3_bucket, file_prefix, efs_path=efs_path)
|
68 |
-
logging.debug("Done loading")
|
69 |
-
else:
|
70 |
-
#no bucket no path fail
|
71 |
-
print("ERROR: Model path not found")
|
72 |
-
raise Exception("No model path found")
|
73 |
-
|
74 |
-
else:
|
75 |
-
print("Loading model from s3 path..")
|
76 |
-
print(s3_bucket)
|
77 |
-
self.model, self.tokenizer, self.dataset = self.from_pretrained(
|
78 |
-
model_path, s3_bucket, file_prefix)
|
79 |
-
logging.debug("Done loading")
|
80 |
-
|
81 |
-
|
82 |
-
self.parameters = {
|
83 |
-
'max_length' : 25, #60
|
84 |
-
'min_length' : 1,
|
85 |
-
'device' : 'cpu',
|
86 |
-
'temperature' : 1.0, #1.5
|
87 |
-
'dynamic_temperature' : True,
|
88 |
-
'dynamic_temperature_range' : 0.15,
|
89 |
-
'top_k' : 50, #50
|
90 |
-
'top_p' : 0.9, #0.9
|
91 |
-
'no_sample' : False,
|
92 |
-
'max_history' : 2,
|
93 |
-
|
94 |
-
}
|
95 |
-
|
96 |
-
print("Done initializing model")
|
97 |
-
|
98 |
-
|
99 |
-
def from_pretrained(self, model_path: str, s3_bucket: str, file_prefix: str , efs_path = None ):
|
100 |
-
|
101 |
-
if efs_path is None:
|
102 |
-
model = self.load_model_from_s3(model_path, s3_bucket, file_prefix)
|
103 |
-
else:
|
104 |
-
model = self.load_model_from_efs(model_path,efs_path)
|
105 |
-
|
106 |
-
print("Model loaded.")
|
107 |
-
print("loading tokenizer from path: ", model_path)
|
108 |
-
|
109 |
-
tokenizer = self.load_tokenizer(model_path)
|
110 |
-
# Get sequence length max of 1024
|
111 |
-
tokenizer.model_max_length = 1024
|
112 |
-
print("tokenizer loaded")
|
113 |
-
|
114 |
-
self.model = model
|
115 |
-
self.tokenizer = tokenizer
|
116 |
-
|
117 |
-
add_special_tokens_(self.model, self.tokenizer)
|
118 |
-
|
119 |
-
#Will only use if it cannot find cache
|
120 |
-
DATASET_PATH = model_path + '/personafile.json' #maynot be needed if cache exists!
|
121 |
-
|
122 |
-
##We have cache no need for dataset path
|
123 |
-
DATASET_CACHE = model_path +'/persona_good' ##persona_good_gpt2_cache (no zip extension)
|
124 |
-
|
125 |
-
|
126 |
-
dataset = self.load_dataset(DATASET_PATH, DATASET_CACHE)
|
127 |
-
self.dataset = dataset
|
128 |
-
|
129 |
-
print("dataset loaded")
|
130 |
-
model.eval()
|
131 |
-
print("Model in eval mode, dataset and tokenizer also loaded")
|
132 |
-
return model, tokenizer, dataset
|
133 |
-
|
134 |
-
def load_model_from_path(self, model_path:str):
|
135 |
-
print("Loading model from path:",model_path)
|
136 |
-
model = GPT2LMHeadModel.from_pretrained(model_path)
|
137 |
-
model.eval()
|
138 |
-
self.model = model
|
139 |
-
return model
|
140 |
-
|
141 |
-
|
142 |
-
def from_pretrained_local_path(self, model_path: str, file_prefix: str):
|
143 |
-
print("Local model loading...")
|
144 |
-
model = GPT2LMHeadModel.from_pretrained(model_path)
|
145 |
-
tokenizer = self.load_tokenizer(model_path)
|
146 |
-
|
147 |
-
self.model = model
|
148 |
-
self.tokenizer = tokenizer
|
149 |
-
|
150 |
-
# Get sequence length max of 1024
|
151 |
-
tokenizer.model_max_length = 1024
|
152 |
-
add_special_tokens_(model, tokenizer)
|
153 |
-
|
154 |
-
|
155 |
-
#Will only use if it cannot find cache
|
156 |
-
DATASET_PATH = model_path + '/personafile.json' #maynot be needed if cache exists!
|
157 |
-
|
158 |
-
##We have cache no need for dataset path
|
159 |
-
DATASET_CACHE = model_path +'/persona_good' ##persona_good_gpt2_cache (no zip extension)
|
160 |
-
|
161 |
-
dataset = self.load_dataset(DATASET_PATH, DATASET_CACHE)
|
162 |
-
|
163 |
-
self.dataset = dataset
|
164 |
-
|
165 |
-
|
166 |
-
model.eval()
|
167 |
-
print("Model in eval mode, dataset and tokenizer also loaded")
|
168 |
-
return model, tokenizer, dataset
|
169 |
-
|
170 |
-
def load_model_from_efs(self, model_path: str, efs_path: str):
|
171 |
-
if model_path and efs_path:
|
172 |
-
config = AutoConfig.from_pretrained(f'{model_path}/config.json')
|
173 |
-
with open(efs_path, 'rb') as f:
|
174 |
-
# state messes things just use classics!
|
175 |
-
state = torch.load(io.BytesIO(
|
176 |
-
f.read()), map_location=lambda storage, loc: storage)
|
177 |
-
|
178 |
-
'''alt
|
179 |
-
with open(efs_path, 'rb') as f:
|
180 |
-
state = pickle.load(f, encoding='latin1')
|
181 |
-
'''
|
182 |
-
model = GPT2LMHeadModel.from_pretrained(
|
183 |
-
pretrained_model_name_or_path=None, state_dict=state, config=config)
|
184 |
-
return model
|
185 |
-
else:
|
186 |
-
raise KeyError('No model config path or EFS bin path')
|
187 |
-
|
188 |
-
|
189 |
-
def load_model_from_s3(self, model_path: str, s3_bucket: str, file_prefix: str):
|
190 |
-
if model_path and s3_bucket and file_prefix:
|
191 |
-
obj = s3.get_object(Bucket=s3_bucket, Key=file_prefix)
|
192 |
-
bytestream = io.BytesIO(obj['Body'].read())
|
193 |
-
|
194 |
-
tar = tarfile.open(fileobj=bytestream, mode="r:gz")
|
195 |
-
config = AutoConfig.from_pretrained(f'{model_path}/config.json')
|
196 |
-
for member in tar.getmembers():
|
197 |
-
if member.name.startswith("./._"):
|
198 |
-
# osx tar adds ./._XXX copyfile need to pass this file
|
199 |
-
continue
|
200 |
-
if member.name.endswith(".bin"):
|
201 |
-
f = tar.extractfile(member)
|
202 |
-
print("Model file extracted: " + member.name)
|
203 |
-
|
204 |
-
# state messes things just use classics!
|
205 |
-
state = torch.load(io.BytesIO(
|
206 |
-
f.read()), map_location=lambda storage, loc: storage)
|
207 |
-
model = GPT2LMHeadModel.from_pretrained(
|
208 |
-
pretrained_model_name_or_path=None, state_dict=state, config=config)
|
209 |
-
#model = AutoModelWithLMHead.from_pretrained("./", config=config)
|
210 |
-
|
211 |
-
|
212 |
-
return model
|
213 |
-
else:
|
214 |
-
raise KeyError('No S3 Bucket and Key Prefix provided')
|
215 |
-
|
216 |
-
def load_tokenizer(self, model_path: str):
|
217 |
-
print("loading tokenizer")
|
218 |
-
tokenizer = GPT2Tokenizer.from_pretrained(model_path)
|
219 |
-
return tokenizer
|
220 |
-
|
221 |
-
def load_dataset(self, DATASET_PATH: str, DATASET_CACHE: str, use_efs= False):
|
222 |
-
print("loading dataset")
|
223 |
-
dataset = get_dataset(self.tokenizer, DATASET_PATH, DATASET_CACHE)
|
224 |
-
return dataset
|
225 |
-
|
226 |
-
def encode(self, question, context):
|
227 |
-
encoded = self.tokenizer.encode_plus(question, context)
|
228 |
-
return encoded["input_ids"], encoded["attention_mask"]
|
229 |
-
|
230 |
-
def decode(self, token):
|
231 |
-
answer_tokens = self.tokenizer.convert_ids_to_tokens(
|
232 |
-
token, skip_special_tokens=True)
|
233 |
-
return self.tokenizer.convert_tokens_to_string(answer_tokens)
|
234 |
-
|
235 |
-
def generate_word(self, text, model=None, tokenizer=None, noprint=False):
|
236 |
-
if model is None or tokenizer is None:
|
237 |
-
print("ERROR: No model or tokenizer")
|
238 |
-
return None
|
239 |
-
|
240 |
-
inputs = tokenizer(text, return_tensors="pt")
|
241 |
-
|
242 |
-
# model output
|
243 |
-
outputs = model(**inputs, labels=inputs["input_ids"])
|
244 |
-
loss, logits = outputs[:2]
|
245 |
-
predicted_index = torch.argmax(logits[0, -1, :]).item()
|
246 |
-
predicted_text = tokenizer.decode([predicted_index])
|
247 |
-
|
248 |
-
# results
|
249 |
-
if not noprint:
|
250 |
-
print('input text:', text)
|
251 |
-
print('predicted text:', predicted_text)
|
252 |
-
|
253 |
-
return predicted_text
|
254 |
-
|
255 |
-
|
256 |
-
def top_filtering(self,logits, top_k=0., top_p=0.9, threshold=-float('Inf'), filter_value=-float('Inf')):
|
257 |
-
""" Filter a distribution of logits using top-k, top-p (nucleus) and/or threshold filtering
|
258 |
-
Args:
|
259 |
-
logits: logits distribution shape (vocabulary size)
|
260 |
-
top_k: <=0: no filtering, >0: keep only top k tokens with highest probability.
|
261 |
-
top_p: <=0.0: no filtering, >0.0: keep only a subset S of candidates, where S is the smallest subset
|
262 |
-
whose total probability mass is greater than or equal to the threshold top_p.
|
263 |
-
In practice, we select the highest probability tokens whose cumulative probability mass exceeds
|
264 |
-
the threshold top_p.
|
265 |
-
threshold: a minimal threshold to keep logits
|
266 |
-
"""
|
267 |
-
assert logits.dim() == 1 # Only work for batch size 1 for now - could update but it would obfuscate a bit the code
|
268 |
-
top_k = min(top_k, logits.size(-1))
|
269 |
-
if top_k > 0:
|
270 |
-
# Remove all tokens with a probability less than the last token in the top-k tokens
|
271 |
-
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
|
272 |
-
logits[indices_to_remove] = filter_value
|
273 |
-
|
274 |
-
if top_p > 0.0:
|
275 |
-
# Compute cumulative probabilities of sorted tokens
|
276 |
-
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
|
277 |
-
cumulative_probabilities = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
|
278 |
-
|
279 |
-
# Remove tokens with cumulative probability above the threshold
|
280 |
-
sorted_indices_to_remove = cumulative_probabilities > top_p
|
281 |
-
# Shift the indices to the right to keep also the first token above the threshold
|
282 |
-
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
|
283 |
-
sorted_indices_to_remove[..., 0] = 0
|
284 |
-
|
285 |
-
# Back to unsorted indices and set them to -infinity
|
286 |
-
indices_to_remove = sorted_indices[sorted_indices_to_remove]
|
287 |
-
logits[indices_to_remove] = filter_value
|
288 |
-
|
289 |
-
indices_to_remove = logits < threshold
|
290 |
-
logits[indices_to_remove] = filter_value
|
291 |
-
|
292 |
-
return logits
|
293 |
-
|
294 |
-
|
295 |
-
def sample_sequence(self,personality, history, tokenizer, model, params=None, current_output=None):
|
296 |
-
|
297 |
-
start = timeit.default_timer()
|
298 |
-
|
299 |
-
|
300 |
-
if params is not None:
|
301 |
-
|
302 |
-
for k,v in params.items():
|
303 |
-
self.parameters[k] = v
|
304 |
-
|
305 |
-
##to access as dot notation
|
306 |
-
##param = SimpleNamespace(**parameters)
|
307 |
-
|
308 |
-
special_tokens_ids = tokenizer.convert_tokens_to_ids(SPECIAL_TOKENS)
|
309 |
-
if current_output is None:
|
310 |
-
current_output = []
|
311 |
-
|
312 |
-
for i in range(self.parameters['max_length']):
|
313 |
-
|
314 |
-
#print(">: {}/{} ".format(i, self.parameters['max_length'] ) ,end='\r', flush=True)
|
315 |
-
|
316 |
-
instance = build_input_from_segments(personality, history, current_output, tokenizer, with_eos=False)
|
317 |
-
|
318 |
-
input_ids = torch.tensor(instance["input_ids"], device=self.parameters['device']).unsqueeze(0)
|
319 |
-
token_type_ids = torch.tensor(instance["token_type_ids"], device=self.parameters['device']).unsqueeze(0)
|
320 |
-
|
321 |
-
logits = model(input_ids, token_type_ids=token_type_ids)
|
322 |
-
if isinstance(logits, tuple): # for gpt2 and maybe others
|
323 |
-
logits = logits[0]
|
324 |
-
|
325 |
-
#SPECIAL Dynamic Temperature mode
|
326 |
-
if self.parameters['dynamic_temperature']:
|
327 |
-
#random temperature withing -0.1 / + 0.1 or 'dynamic_temperature_range'
|
328 |
-
rand_range = random.uniform(-1 * self.parameters['dynamic_temperature_range'] , self.parameters['dynamic_temperature_range'])
|
329 |
-
temperature = self.parameters['temperature'] + rand_range
|
330 |
-
else:
|
331 |
-
temperature = self.parameters['temperature']
|
332 |
-
|
333 |
-
logits = logits[0, -1, :] / temperature
|
334 |
-
|
335 |
-
logits = self.top_filtering(logits, top_k=self.parameters['top_k'], top_p=self.parameters['top_p'])
|
336 |
-
|
337 |
-
probs = F.softmax(logits, dim=-1)
|
338 |
-
|
339 |
-
prev = torch.topk(probs, 1)[1] if self.parameters['no_sample'] else torch.multinomial(probs, 1)
|
340 |
-
if i < self.parameters['min_length'] and prev.item() in special_tokens_ids:
|
341 |
-
while prev.item() in special_tokens_ids:
|
342 |
-
if probs.max().item() == 1:
|
343 |
-
warnings.warn("Warning: model generating special token with probability 1.")
|
344 |
-
break # avoid infinitely looping over special token
|
345 |
-
prev = torch.multinomial(probs, num_samples=1)
|
346 |
-
|
347 |
-
if prev.item() in special_tokens_ids:
|
348 |
-
##breaks here if found end of anser!!
|
349 |
-
break
|
350 |
-
current_output.append(prev.item())
|
351 |
-
|
352 |
-
|
353 |
-
stop = timeit.default_timer()
|
354 |
-
#print(f"\nPredict in {stop - start} seconds\n")
|
355 |
-
|
356 |
-
return current_output
|
357 |
-
|
358 |
-
|
359 |
-
def dump_personalities_with_movies(self):
|
360 |
-
personalities = [ [dialog["name"], dialog["moviename"]] for dialog in self.dataset["train"]]
|
361 |
-
name_list = []
|
362 |
-
for person in personalities:
|
363 |
-
try:
|
364 |
-
name_tokenized = person[0]
|
365 |
-
name = self.tokenizer.decode(name_tokenized)
|
366 |
-
movies_tokenized = person[1]
|
367 |
-
movienames= ""
|
368 |
-
##check type of first element
|
369 |
-
##if int , only 1 movie
|
370 |
-
if isinstance(movies_tokenized[0], int):
|
371 |
-
movienames = self.tokenizer.decode(movies_tokenized)
|
372 |
-
movienames = movienames.replace(".txt", "")
|
373 |
-
else:
|
374 |
-
for movie in movies_tokenized:
|
375 |
-
moviename = self.tokenizer.decode(movie)
|
376 |
-
moviename = moviename.replace(".txt", "")
|
377 |
-
movienames = movienames + " / " + moviename
|
378 |
-
name_list.append([name,movienames])
|
379 |
-
except:
|
380 |
-
print("Could not do name:", self.tokenizer.decode(person[0]))
|
381 |
-
|
382 |
-
return name_list
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
def dump_personalities(self,as_list=False):
|
388 |
-
personalities = [dialog["personality"] for dialog in self.dataset["train"]]
|
389 |
-
name_list = []
|
390 |
-
for person in personalities:
|
391 |
-
name_tokenized = person[-1]
|
392 |
-
name = self.tokenizer.decode(name_tokenized)
|
393 |
-
name = name.replace("My name is ", "")[:-1]
|
394 |
-
name_list.append(name)
|
395 |
-
#print(name)
|
396 |
-
|
397 |
-
if as_list:
|
398 |
-
return name_list
|
399 |
-
else:
|
400 |
-
return " | ".join(name_list)
|
401 |
-
|
402 |
-
|
403 |
-
def get_personalities(self):
|
404 |
-
##THIS FUNCTION IS NOW LEGACY, USE dump_personalities
|
405 |
-
personalities = [dialog["personality"] for dialog in self.dataset["train"]]
|
406 |
-
|
407 |
-
people = [item[-1][-10:-1] for item in personalities]
|
408 |
-
##will get My Name is Something
|
409 |
-
people_list = self.tokenizer.decode(chain(*people))
|
410 |
-
|
411 |
-
#print( " | ".join( people_list.split(" ") ) )
|
412 |
-
text_to_remove = "My name is "
|
413 |
-
people_list = people_list.replace(text_to_remove, " | ")
|
414 |
-
|
415 |
-
|
416 |
-
#characters = " | ".join( people_list.split(" ") )
|
417 |
-
|
418 |
-
return people_list
|
419 |
-
|
420 |
-
def select_personality(self,characters,select_random=False):
|
421 |
-
##FIND people list
|
422 |
-
##this is for debug, usually has " is Name"
|
423 |
-
#people = [item[-1][-3:-1] for item in personalities]
|
424 |
-
personalities = [dialog["personality"] for dialog in self.dataset["train"]]
|
425 |
-
|
426 |
-
if select_random : return random.choice(personalities)
|
427 |
-
|
428 |
-
|
429 |
-
#people = [item[-1][-2:-1] for item in personalities]
|
430 |
-
#people_list = self.tokenizer.decode(chain(*people))
|
431 |
-
#print( " | ".join( people_list.split(" ") ) )
|
432 |
-
|
433 |
-
personality = None
|
434 |
-
|
435 |
-
name = "My name is " + str(characters)
|
436 |
-
name_token = self.tokenizer.encode(name)
|
437 |
-
#print(name_token)
|
438 |
-
index_start = len(name_token)+1
|
439 |
-
|
440 |
-
try:
|
441 |
-
|
442 |
-
index_of_name = [ item[-1][-1*index_start: -1]== name_token for item in personalities].index(True)
|
443 |
-
|
444 |
-
#print("Selected {} is at: {}".format(characters, str(index_of_name) ) )
|
445 |
-
personality = personalities[index_of_name]
|
446 |
-
except:
|
447 |
-
print("Not found ... Select again")
|
448 |
-
return None
|
449 |
-
|
450 |
-
##TALK TO HAL
|
451 |
-
#personality_hal = ["that's true. My name is Hal"]
|
452 |
-
#personality = tokenize(personality_hal)
|
453 |
-
#print(personality)
|
454 |
-
|
455 |
-
print("Selected personality: %s", self.tokenizer.decode(chain(*personality)))
|
456 |
-
|
457 |
-
return personality
|
458 |
-
|
459 |
-
|
460 |
-
|
461 |
-
def get_answer(self, input_text, personality, history, params=None):
|
462 |
-
|
463 |
-
##Check length of history (to save 1 computation!)
|
464 |
-
if len(history)>0:
|
465 |
-
#mostly it will be empty list so need a length check for performance
|
466 |
-
#would do string check also but just assume it is list of list of strings, as not public
|
467 |
-
|
468 |
-
new_hist = []
|
469 |
-
for ele in history:
|
470 |
-
new_hist.append( self.tokenizer.encode(ele) )
|
471 |
-
history = new_hist.copy()
|
472 |
-
|
473 |
-
history.append(self.tokenizer.encode(input_text))
|
474 |
-
|
475 |
-
with torch.no_grad():
|
476 |
-
out_ids = self.sample_sequence(personality, history, self.tokenizer, self.model, params=params)
|
477 |
-
history.append(out_ids)
|
478 |
-
history = history[-(2*self.parameters['max_history']+1):]
|
479 |
-
out_text = self.tokenizer.decode(out_ids, skip_special_tokens=True)
|
480 |
-
#print(out_text)
|
481 |
-
|
482 |
-
|
483 |
-
history_decoded = []
|
484 |
-
for ele in history:
|
485 |
-
history_decoded.append(self.tokenizer.decode(ele))
|
486 |
-
|
487 |
-
return out_text, history_decoded, self.parameters
|
488 |
-
|
489 |
-
|
490 |
-
|
491 |
-
def predict(self, question, parameter_dict):
|
492 |
-
try:
|
493 |
-
answer = self.generate_text(question, model=self.model,
|
494 |
-
tokenizer=self.tokenizer,
|
495 |
-
parameter_dict=parameter_dict,
|
496 |
-
)
|
497 |
-
return answer
|
498 |
-
except Exception as e:
|
499 |
-
raise Exception(
|
500 |
-
"Runtime error see cloudwatch logs : {}".format(repr(e)))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|