gossminn commited on
Commit
45e5282
1 Parent(s): 502c246

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +164 -0
README.md ADDED
@@ -0,0 +1,164 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
+ model-index:
8
+ - name: detect-femicide-news-xlmr-nl-mono-freeze2
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # detect-femicide-news-xlmr-nl-mono-freeze2
16
+
17
+ This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.6487
20
+ - Accuracy: 0.6429
21
+ - Precision Neg: 0.6429
22
+ - Precision Pos: 0.0
23
+ - Recall Neg: 1.0
24
+ - Recall Pos: 0.0
25
+ - F1 Score Neg: 0.7826
26
+ - F1 Score Pos: 0.0
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 1e-05
46
+ - train_batch_size: 24
47
+ - eval_batch_size: 8
48
+ - seed: 1996
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - num_epochs: 100
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision Neg | Precision Pos | Recall Neg | Recall Pos | F1 Score Neg | F1 Score Pos |
56
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:-------------:|:----------:|:----------:|:------------:|:------------:|
57
+ | 0.7312 | 1.0 | 23 | 0.7413 | 0.3571 | 0.0 | 0.3571 | 0.0 | 1.0 | 0.0 | 0.5263 |
58
+ | 0.7151 | 2.0 | 46 | 0.7177 | 0.3571 | 0.0 | 0.3571 | 0.0 | 1.0 | 0.0 | 0.5263 |
59
+ | 0.7049 | 3.0 | 69 | 0.6988 | 0.3571 | 0.0 | 0.3571 | 0.0 | 1.0 | 0.0 | 0.5263 |
60
+ | 0.6934 | 4.0 | 92 | 0.6945 | 0.3571 | 0.0 | 0.3571 | 0.0 | 1.0 | 0.0 | 0.5263 |
61
+ | 0.6886 | 5.0 | 115 | 0.6903 | 0.6071 | 0.8182 | 0.4706 | 0.5 | 0.8 | 0.6207 | 0.5926 |
62
+ | 0.6911 | 6.0 | 138 | 0.6846 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 |
63
+ | 0.6856 | 7.0 | 161 | 0.6786 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 |
64
+ | 0.6888 | 8.0 | 184 | 0.6783 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 |
65
+ | 0.6862 | 9.0 | 207 | 0.6819 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 |
66
+ | 0.6807 | 10.0 | 230 | 0.6758 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 |
67
+ | 0.6839 | 11.0 | 253 | 0.6721 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 |
68
+ | 0.6878 | 12.0 | 276 | 0.6708 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 |
69
+ | 0.6799 | 13.0 | 299 | 0.6692 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 |
70
+ | 0.6813 | 14.0 | 322 | 0.6673 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 |
71
+ | 0.6792 | 15.0 | 345 | 0.6676 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 |
72
+ | 0.6774 | 16.0 | 368 | 0.6683 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 |
73
+ | 0.6807 | 17.0 | 391 | 0.6679 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 |
74
+ | 0.6834 | 18.0 | 414 | 0.6693 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 |
75
+ | 0.6784 | 19.0 | 437 | 0.6679 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 |
76
+ | 0.676 | 20.0 | 460 | 0.6698 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 |
77
+ | 0.6791 | 21.0 | 483 | 0.6661 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 |
78
+ | 0.6775 | 22.0 | 506 | 0.6633 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 |
79
+ | 0.6688 | 23.0 | 529 | 0.6589 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 |
80
+ | 0.6748 | 24.0 | 552 | 0.6580 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 |
81
+ | 0.6771 | 25.0 | 575 | 0.6619 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 |
82
+ | 0.6761 | 26.0 | 598 | 0.6639 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 |
83
+ | 0.6773 | 27.0 | 621 | 0.6651 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 |
84
+ | 0.6737 | 28.0 | 644 | 0.6656 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 |
85
+ | 0.6721 | 29.0 | 667 | 0.6650 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 |
86
+ | 0.6683 | 30.0 | 690 | 0.6612 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 |
87
+ | 0.6663 | 31.0 | 713 | 0.6592 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 |
88
+ | 0.6724 | 32.0 | 736 | 0.6576 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 |
89
+ | 0.6739 | 33.0 | 759 | 0.6601 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 |
90
+ | 0.6691 | 34.0 | 782 | 0.6602 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 |
91
+ | 0.6652 | 35.0 | 805 | 0.6588 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 |
92
+ | 0.6717 | 36.0 | 828 | 0.6596 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 |
93
+ | 0.6637 | 37.0 | 851 | 0.6587 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 |
94
+ | 0.6704 | 38.0 | 874 | 0.6579 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 |
95
+ | 0.6608 | 39.0 | 897 | 0.6599 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 |
96
+ | 0.6615 | 40.0 | 920 | 0.6580 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 |
97
+ | 0.6662 | 41.0 | 943 | 0.6592 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 |
98
+ | 0.6622 | 42.0 | 966 | 0.6616 | 0.6071 | 0.6296 | 0.0 | 0.9444 | 0.0 | 0.7556 | 0.0 |
99
+ | 0.664 | 43.0 | 989 | 0.6610 | 0.6071 | 0.6296 | 0.0 | 0.9444 | 0.0 | 0.7556 | 0.0 |
100
+ | 0.6695 | 44.0 | 1012 | 0.6570 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 |
101
+ | 0.6677 | 45.0 | 1035 | 0.6557 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 |
102
+ | 0.6705 | 46.0 | 1058 | 0.6546 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 |
103
+ | 0.6591 | 47.0 | 1081 | 0.6547 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 |
104
+ | 0.6675 | 48.0 | 1104 | 0.6532 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 |
105
+ | 0.6622 | 49.0 | 1127 | 0.6544 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 |
106
+ | 0.6571 | 50.0 | 1150 | 0.6552 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 |
107
+ | 0.6678 | 51.0 | 1173 | 0.6555 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 |
108
+ | 0.6596 | 52.0 | 1196 | 0.6544 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 |
109
+ | 0.6583 | 53.0 | 1219 | 0.6517 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 |
110
+ | 0.6641 | 54.0 | 1242 | 0.6508 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 |
111
+ | 0.671 | 55.0 | 1265 | 0.6502 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 |
112
+ | 0.6645 | 56.0 | 1288 | 0.6513 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 |
113
+ | 0.6604 | 57.0 | 1311 | 0.6510 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 |
114
+ | 0.6644 | 58.0 | 1334 | 0.6509 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 |
115
+ | 0.6617 | 59.0 | 1357 | 0.6528 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 |
116
+ | 0.6608 | 60.0 | 1380 | 0.6536 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 |
117
+ | 0.6533 | 61.0 | 1403 | 0.6533 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 |
118
+ | 0.6596 | 62.0 | 1426 | 0.6518 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 |
119
+ | 0.6607 | 63.0 | 1449 | 0.6511 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 |
120
+ | 0.658 | 64.0 | 1472 | 0.6509 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 |
121
+ | 0.6546 | 65.0 | 1495 | 0.6514 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 |
122
+ | 0.6613 | 66.0 | 1518 | 0.6516 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 |
123
+ | 0.662 | 67.0 | 1541 | 0.6506 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 |
124
+ | 0.661 | 68.0 | 1564 | 0.6503 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 |
125
+ | 0.6571 | 69.0 | 1587 | 0.6497 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 |
126
+ | 0.6656 | 70.0 | 1610 | 0.6500 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 |
127
+ | 0.6637 | 71.0 | 1633 | 0.6508 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 |
128
+ | 0.6519 | 72.0 | 1656 | 0.6518 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 |
129
+ | 0.6593 | 73.0 | 1679 | 0.6516 | 0.6071 | 0.6296 | 0.0 | 0.9444 | 0.0 | 0.7556 | 0.0 |
130
+ | 0.6539 | 74.0 | 1702 | 0.6514 | 0.6071 | 0.6296 | 0.0 | 0.9444 | 0.0 | 0.7556 | 0.0 |
131
+ | 0.6568 | 75.0 | 1725 | 0.6506 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 |
132
+ | 0.6581 | 76.0 | 1748 | 0.6504 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 |
133
+ | 0.6557 | 77.0 | 1771 | 0.6499 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 |
134
+ | 0.6542 | 78.0 | 1794 | 0.6500 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 |
135
+ | 0.6557 | 79.0 | 1817 | 0.6498 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 |
136
+ | 0.6637 | 80.0 | 1840 | 0.6493 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 |
137
+ | 0.6603 | 81.0 | 1863 | 0.6490 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 |
138
+ | 0.6568 | 82.0 | 1886 | 0.6485 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 |
139
+ | 0.6561 | 83.0 | 1909 | 0.6490 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 |
140
+ | 0.6665 | 84.0 | 1932 | 0.6499 | 0.6071 | 0.6296 | 0.0 | 0.9444 | 0.0 | 0.7556 | 0.0 |
141
+ | 0.655 | 85.0 | 1955 | 0.6492 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 |
142
+ | 0.6509 | 86.0 | 1978 | 0.6493 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 |
143
+ | 0.6549 | 87.0 | 2001 | 0.6493 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 |
144
+ | 0.655 | 88.0 | 2024 | 0.6489 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 |
145
+ | 0.6576 | 89.0 | 2047 | 0.6493 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 |
146
+ | 0.6612 | 90.0 | 2070 | 0.6492 | 0.6071 | 0.6296 | 0.0 | 0.9444 | 0.0 | 0.7556 | 0.0 |
147
+ | 0.6641 | 91.0 | 2093 | 0.6492 | 0.6071 | 0.6296 | 0.0 | 0.9444 | 0.0 | 0.7556 | 0.0 |
148
+ | 0.654 | 92.0 | 2116 | 0.6487 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 |
149
+ | 0.6556 | 93.0 | 2139 | 0.6488 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 |
150
+ | 0.6566 | 94.0 | 2162 | 0.6486 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 |
151
+ | 0.6565 | 95.0 | 2185 | 0.6487 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 |
152
+ | 0.6516 | 96.0 | 2208 | 0.6488 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 |
153
+ | 0.6509 | 97.0 | 2231 | 0.6487 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 |
154
+ | 0.6588 | 98.0 | 2254 | 0.6487 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 |
155
+ | 0.6532 | 99.0 | 2277 | 0.6487 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 |
156
+ | 0.6548 | 100.0 | 2300 | 0.6487 | 0.6429 | 0.6429 | 0.0 | 1.0 | 0.0 | 0.7826 | 0.0 |
157
+
158
+
159
+ ### Framework versions
160
+
161
+ - Transformers 4.16.2
162
+ - Pytorch 1.10.2+cu113
163
+ - Datasets 1.18.3
164
+ - Tokenizers 0.11.0