..
Browse files- 550/README.md +5 -0
- 550/adapter_config.json +30 -0
- 550/adapter_model.safetensors +3 -0
- 550/latest +1 -0
- 550/scheduler.pt +3 -0
- 550/special_tokens_map.json +24 -0
- 550/tokenizer.model +3 -0
- 550/tokenizer_config.json +45 -0
- 550/trainer_state.json +3871 -0
- 550/training_args.bin +3 -0
- 550/zero_to_fp32.py +604 -0
550/README.md
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
base_model: gotzmann/uni
|
4 |
+
---
|
5 |
+
|
550/adapter_config.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "gotzmann/uni",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layers_pattern": null,
|
10 |
+
"layers_to_transform": null,
|
11 |
+
"loftq_config": {},
|
12 |
+
"lora_alpha": 64,
|
13 |
+
"lora_dropout": 0.0,
|
14 |
+
"megatron_config": null,
|
15 |
+
"megatron_core": "megatron.core",
|
16 |
+
"modules_to_save": null,
|
17 |
+
"peft_type": "LORA",
|
18 |
+
"r": 64,
|
19 |
+
"rank_pattern": {},
|
20 |
+
"revision": null,
|
21 |
+
"target_modules": [
|
22 |
+
"k_proj",
|
23 |
+
"q_proj",
|
24 |
+
"o_proj",
|
25 |
+
"v_proj"
|
26 |
+
],
|
27 |
+
"task_type": "CAUSAL_LM",
|
28 |
+
"use_dora": false,
|
29 |
+
"use_rslora": true
|
30 |
+
}
|
550/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b9dec318f995b7373344d5e2162bfe856c84311ba9ae0b310aeebb3ea7d43b91
|
3 |
+
size 524376008
|
550/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step550
|
550/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:40a12d9285b8b158862f33ffc490a848cc05f36eadf4b07505ee89c3e499e4c2
|
3 |
+
size 1064
|
550/special_tokens_map.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "</s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": "</s>",
|
17 |
+
"unk_token": {
|
18 |
+
"content": "<unk>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
}
|
24 |
+
}
|
550/tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
|
3 |
+
size 499723
|
550/tokenizer_config.json
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"add_prefix_space": false,
|
5 |
+
"added_tokens_decoder": {
|
6 |
+
"0": {
|
7 |
+
"content": "<unk>",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": false,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false,
|
12 |
+
"special": true
|
13 |
+
},
|
14 |
+
"1": {
|
15 |
+
"content": "<s>",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": false,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false,
|
20 |
+
"special": true
|
21 |
+
},
|
22 |
+
"2": {
|
23 |
+
"content": "</s>",
|
24 |
+
"lstrip": false,
|
25 |
+
"normalized": false,
|
26 |
+
"rstrip": false,
|
27 |
+
"single_word": false,
|
28 |
+
"special": true
|
29 |
+
}
|
30 |
+
},
|
31 |
+
"bos_token": "<s>",
|
32 |
+
"chat_template": "{% if messages[0]['role'] == 'system' %}{% set system_message = messages[0]['content'] %}{% endif %}{% if system_message is defined %}{{ '<s>' + '### System:\\n\\n' + system_message }}{% endif %}{% for message in messages %}{% set content = message['content'] %}{% if message['role'] == 'user' %}{{ '\\n\\n### Human:\\n\\n' + content }}{% elif message['role'] == 'assistant' %}{{ '\\n\\n### Assistant:\\n\\n' + content + '</s>' }}{% endif %}{% endfor %}",
|
33 |
+
"clean_up_tokenization_spaces": false,
|
34 |
+
"eos_token": "</s>",
|
35 |
+
"legacy": false,
|
36 |
+
"model_max_length": 1000000000000000019884624838656,
|
37 |
+
"pad_token": "</s>",
|
38 |
+
"padding_side": "right",
|
39 |
+
"sp_model_kwargs": {},
|
40 |
+
"spaces_between_special_tokens": false,
|
41 |
+
"split_special_tokens": false,
|
42 |
+
"tokenizer_class": "LlamaTokenizer",
|
43 |
+
"unk_token": "<unk>",
|
44 |
+
"use_default_system_prompt": false
|
45 |
+
}
|
550/trainer_state.json
ADDED
@@ -0,0 +1,3871 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 1.0018214936247722,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 550,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.0,
|
13 |
+
"grad_norm": 0.46431864432643544,
|
14 |
+
"learning_rate": 1.2121212121212122e-06,
|
15 |
+
"loss": 1.4151,
|
16 |
+
"step": 1
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.0,
|
20 |
+
"grad_norm": 0.42969176658539837,
|
21 |
+
"learning_rate": 2.4242424242424244e-06,
|
22 |
+
"loss": 1.3729,
|
23 |
+
"step": 2
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.01,
|
27 |
+
"grad_norm": 0.5004307936270223,
|
28 |
+
"learning_rate": 3.636363636363636e-06,
|
29 |
+
"loss": 1.3989,
|
30 |
+
"step": 3
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.01,
|
34 |
+
"grad_norm": 0.43666634920041486,
|
35 |
+
"learning_rate": 4.848484848484849e-06,
|
36 |
+
"loss": 1.3363,
|
37 |
+
"step": 4
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.01,
|
41 |
+
"grad_norm": 0.4691114419353825,
|
42 |
+
"learning_rate": 6.060606060606061e-06,
|
43 |
+
"loss": 1.4293,
|
44 |
+
"step": 5
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.01,
|
48 |
+
"grad_norm": 0.4277596061377729,
|
49 |
+
"learning_rate": 7.272727272727272e-06,
|
50 |
+
"loss": 1.4343,
|
51 |
+
"step": 6
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.01,
|
55 |
+
"grad_norm": 0.4238339229382504,
|
56 |
+
"learning_rate": 8.484848484848486e-06,
|
57 |
+
"loss": 1.4462,
|
58 |
+
"step": 7
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"epoch": 0.01,
|
62 |
+
"grad_norm": 0.40992048534183273,
|
63 |
+
"learning_rate": 9.696969696969698e-06,
|
64 |
+
"loss": 1.2756,
|
65 |
+
"step": 8
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 0.02,
|
69 |
+
"grad_norm": 0.37885700313540693,
|
70 |
+
"learning_rate": 1.0909090909090909e-05,
|
71 |
+
"loss": 1.3464,
|
72 |
+
"step": 9
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"epoch": 0.02,
|
76 |
+
"grad_norm": 0.36066141170123023,
|
77 |
+
"learning_rate": 1.2121212121212122e-05,
|
78 |
+
"loss": 1.3419,
|
79 |
+
"step": 10
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"epoch": 0.02,
|
83 |
+
"grad_norm": 0.35617169386863406,
|
84 |
+
"learning_rate": 1.3333333333333333e-05,
|
85 |
+
"loss": 1.3533,
|
86 |
+
"step": 11
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.02,
|
90 |
+
"grad_norm": 0.3040188564782602,
|
91 |
+
"learning_rate": 1.4545454545454545e-05,
|
92 |
+
"loss": 1.2395,
|
93 |
+
"step": 12
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.02,
|
97 |
+
"grad_norm": 0.31038319439216566,
|
98 |
+
"learning_rate": 1.5757575757575756e-05,
|
99 |
+
"loss": 1.3082,
|
100 |
+
"step": 13
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"epoch": 0.03,
|
104 |
+
"grad_norm": 0.26683768372135835,
|
105 |
+
"learning_rate": 1.6969696969696972e-05,
|
106 |
+
"loss": 1.3063,
|
107 |
+
"step": 14
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"epoch": 0.03,
|
111 |
+
"grad_norm": 0.3652323682563078,
|
112 |
+
"learning_rate": 1.8181818181818182e-05,
|
113 |
+
"loss": 1.3045,
|
114 |
+
"step": 15
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 0.03,
|
118 |
+
"grad_norm": 0.23559121485457843,
|
119 |
+
"learning_rate": 1.9393939393939395e-05,
|
120 |
+
"loss": 1.2366,
|
121 |
+
"step": 16
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 0.03,
|
125 |
+
"grad_norm": 0.2342299313020104,
|
126 |
+
"learning_rate": 2.0606060606060608e-05,
|
127 |
+
"loss": 1.2831,
|
128 |
+
"step": 17
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.03,
|
132 |
+
"grad_norm": 0.2202931700357255,
|
133 |
+
"learning_rate": 2.1818181818181818e-05,
|
134 |
+
"loss": 1.3064,
|
135 |
+
"step": 18
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.03,
|
139 |
+
"grad_norm": 0.2097660599292375,
|
140 |
+
"learning_rate": 2.3030303030303034e-05,
|
141 |
+
"loss": 1.2376,
|
142 |
+
"step": 19
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"epoch": 0.04,
|
146 |
+
"grad_norm": 0.2356785314652122,
|
147 |
+
"learning_rate": 2.4242424242424244e-05,
|
148 |
+
"loss": 1.2802,
|
149 |
+
"step": 20
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"epoch": 0.04,
|
153 |
+
"grad_norm": 0.24639302530564244,
|
154 |
+
"learning_rate": 2.5454545454545454e-05,
|
155 |
+
"loss": 1.3016,
|
156 |
+
"step": 21
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"epoch": 0.04,
|
160 |
+
"grad_norm": 0.24373126133228787,
|
161 |
+
"learning_rate": 2.6666666666666667e-05,
|
162 |
+
"loss": 1.3407,
|
163 |
+
"step": 22
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"epoch": 0.04,
|
167 |
+
"grad_norm": 0.24488805144123432,
|
168 |
+
"learning_rate": 2.7878787878787883e-05,
|
169 |
+
"loss": 1.3325,
|
170 |
+
"step": 23
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.04,
|
174 |
+
"grad_norm": 0.2653033507571198,
|
175 |
+
"learning_rate": 2.909090909090909e-05,
|
176 |
+
"loss": 1.2811,
|
177 |
+
"step": 24
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.05,
|
181 |
+
"grad_norm": 1.2841724819336817,
|
182 |
+
"learning_rate": 3.0303030303030306e-05,
|
183 |
+
"loss": 1.2837,
|
184 |
+
"step": 25
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"epoch": 0.05,
|
188 |
+
"grad_norm": 0.2183883020111492,
|
189 |
+
"learning_rate": 3.151515151515151e-05,
|
190 |
+
"loss": 1.2472,
|
191 |
+
"step": 26
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"epoch": 0.05,
|
195 |
+
"grad_norm": 0.2137995163762026,
|
196 |
+
"learning_rate": 3.272727272727273e-05,
|
197 |
+
"loss": 1.2854,
|
198 |
+
"step": 27
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"epoch": 0.05,
|
202 |
+
"grad_norm": 0.19499006223503876,
|
203 |
+
"learning_rate": 3.3939393939393945e-05,
|
204 |
+
"loss": 1.3018,
|
205 |
+
"step": 28
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"epoch": 0.05,
|
209 |
+
"grad_norm": 0.17367919355340256,
|
210 |
+
"learning_rate": 3.515151515151515e-05,
|
211 |
+
"loss": 1.2824,
|
212 |
+
"step": 29
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 0.05,
|
216 |
+
"grad_norm": 0.18326045693683557,
|
217 |
+
"learning_rate": 3.6363636363636364e-05,
|
218 |
+
"loss": 1.2192,
|
219 |
+
"step": 30
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.06,
|
223 |
+
"grad_norm": 0.17474388188066411,
|
224 |
+
"learning_rate": 3.757575757575758e-05,
|
225 |
+
"loss": 1.2078,
|
226 |
+
"step": 31
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 0.06,
|
230 |
+
"grad_norm": 0.17856970178098716,
|
231 |
+
"learning_rate": 3.878787878787879e-05,
|
232 |
+
"loss": 1.2683,
|
233 |
+
"step": 32
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"epoch": 0.06,
|
237 |
+
"grad_norm": 0.18617589704298348,
|
238 |
+
"learning_rate": 4e-05,
|
239 |
+
"loss": 1.2265,
|
240 |
+
"step": 33
|
241 |
+
},
|
242 |
+
{
|
243 |
+
"epoch": 0.06,
|
244 |
+
"grad_norm": 0.17653209733215317,
|
245 |
+
"learning_rate": 4.1212121212121216e-05,
|
246 |
+
"loss": 1.319,
|
247 |
+
"step": 34
|
248 |
+
},
|
249 |
+
{
|
250 |
+
"epoch": 0.06,
|
251 |
+
"grad_norm": 0.1722921367585233,
|
252 |
+
"learning_rate": 4.242424242424243e-05,
|
253 |
+
"loss": 1.2117,
|
254 |
+
"step": 35
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 0.07,
|
258 |
+
"grad_norm": 0.176642606378719,
|
259 |
+
"learning_rate": 4.3636363636363636e-05,
|
260 |
+
"loss": 1.2512,
|
261 |
+
"step": 36
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 0.07,
|
265 |
+
"grad_norm": 0.16696442324691066,
|
266 |
+
"learning_rate": 4.484848484848485e-05,
|
267 |
+
"loss": 1.2637,
|
268 |
+
"step": 37
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"epoch": 0.07,
|
272 |
+
"grad_norm": 0.17035384059517106,
|
273 |
+
"learning_rate": 4.606060606060607e-05,
|
274 |
+
"loss": 1.2699,
|
275 |
+
"step": 38
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"epoch": 0.07,
|
279 |
+
"grad_norm": 0.15545801881444482,
|
280 |
+
"learning_rate": 4.7272727272727275e-05,
|
281 |
+
"loss": 1.2939,
|
282 |
+
"step": 39
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"epoch": 0.07,
|
286 |
+
"grad_norm": 0.17111439344347512,
|
287 |
+
"learning_rate": 4.848484848484849e-05,
|
288 |
+
"loss": 1.3033,
|
289 |
+
"step": 40
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"epoch": 0.07,
|
293 |
+
"grad_norm": 0.16994151343455458,
|
294 |
+
"learning_rate": 4.9696969696969694e-05,
|
295 |
+
"loss": 1.2603,
|
296 |
+
"step": 41
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 0.08,
|
300 |
+
"grad_norm": 0.15929214926453447,
|
301 |
+
"learning_rate": 5.090909090909091e-05,
|
302 |
+
"loss": 1.2626,
|
303 |
+
"step": 42
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 0.08,
|
307 |
+
"grad_norm": 0.16761261516238699,
|
308 |
+
"learning_rate": 5.212121212121213e-05,
|
309 |
+
"loss": 1.296,
|
310 |
+
"step": 43
|
311 |
+
},
|
312 |
+
{
|
313 |
+
"epoch": 0.08,
|
314 |
+
"grad_norm": 0.15754700542426123,
|
315 |
+
"learning_rate": 5.333333333333333e-05,
|
316 |
+
"loss": 1.278,
|
317 |
+
"step": 44
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"epoch": 0.08,
|
321 |
+
"grad_norm": 0.15522526683877644,
|
322 |
+
"learning_rate": 5.4545454545454546e-05,
|
323 |
+
"loss": 1.2355,
|
324 |
+
"step": 45
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 0.08,
|
328 |
+
"grad_norm": 0.1577929926930023,
|
329 |
+
"learning_rate": 5.5757575757575766e-05,
|
330 |
+
"loss": 1.2879,
|
331 |
+
"step": 46
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 0.09,
|
335 |
+
"grad_norm": 0.31075066632858317,
|
336 |
+
"learning_rate": 5.696969696969697e-05,
|
337 |
+
"loss": 1.2202,
|
338 |
+
"step": 47
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 0.09,
|
342 |
+
"grad_norm": 0.1663780653395111,
|
343 |
+
"learning_rate": 5.818181818181818e-05,
|
344 |
+
"loss": 1.2319,
|
345 |
+
"step": 48
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 0.09,
|
349 |
+
"grad_norm": 0.16049499655883026,
|
350 |
+
"learning_rate": 5.93939393939394e-05,
|
351 |
+
"loss": 1.2801,
|
352 |
+
"step": 49
|
353 |
+
},
|
354 |
+
{
|
355 |
+
"epoch": 0.09,
|
356 |
+
"grad_norm": 0.14515773124436285,
|
357 |
+
"learning_rate": 6.060606060606061e-05,
|
358 |
+
"loss": 1.2588,
|
359 |
+
"step": 50
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"epoch": 0.09,
|
363 |
+
"grad_norm": 0.14653064850325623,
|
364 |
+
"learning_rate": 6.181818181818182e-05,
|
365 |
+
"loss": 1.2677,
|
366 |
+
"step": 51
|
367 |
+
},
|
368 |
+
{
|
369 |
+
"epoch": 0.09,
|
370 |
+
"grad_norm": 0.17193239746689878,
|
371 |
+
"learning_rate": 6.303030303030302e-05,
|
372 |
+
"loss": 1.2742,
|
373 |
+
"step": 52
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"epoch": 0.1,
|
377 |
+
"grad_norm": 0.1967020450342533,
|
378 |
+
"learning_rate": 6.424242424242424e-05,
|
379 |
+
"loss": 1.1545,
|
380 |
+
"step": 53
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"epoch": 0.1,
|
384 |
+
"grad_norm": 0.16247531997247225,
|
385 |
+
"learning_rate": 6.545454545454546e-05,
|
386 |
+
"loss": 1.222,
|
387 |
+
"step": 54
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"epoch": 0.1,
|
391 |
+
"grad_norm": 0.14990706377244528,
|
392 |
+
"learning_rate": 6.666666666666667e-05,
|
393 |
+
"loss": 1.2103,
|
394 |
+
"step": 55
|
395 |
+
},
|
396 |
+
{
|
397 |
+
"epoch": 0.1,
|
398 |
+
"grad_norm": 0.1412817445239095,
|
399 |
+
"learning_rate": 6.787878787878789e-05,
|
400 |
+
"loss": 1.2169,
|
401 |
+
"step": 56
|
402 |
+
},
|
403 |
+
{
|
404 |
+
"epoch": 0.1,
|
405 |
+
"grad_norm": 0.14575971073482757,
|
406 |
+
"learning_rate": 6.90909090909091e-05,
|
407 |
+
"loss": 1.2751,
|
408 |
+
"step": 57
|
409 |
+
},
|
410 |
+
{
|
411 |
+
"epoch": 0.11,
|
412 |
+
"grad_norm": 0.13714747569950891,
|
413 |
+
"learning_rate": 7.03030303030303e-05,
|
414 |
+
"loss": 1.2508,
|
415 |
+
"step": 58
|
416 |
+
},
|
417 |
+
{
|
418 |
+
"epoch": 0.11,
|
419 |
+
"grad_norm": 0.14334695156859903,
|
420 |
+
"learning_rate": 7.151515151515152e-05,
|
421 |
+
"loss": 1.2721,
|
422 |
+
"step": 59
|
423 |
+
},
|
424 |
+
{
|
425 |
+
"epoch": 0.11,
|
426 |
+
"grad_norm": 0.1456824177522916,
|
427 |
+
"learning_rate": 7.272727272727273e-05,
|
428 |
+
"loss": 1.2649,
|
429 |
+
"step": 60
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 0.11,
|
433 |
+
"grad_norm": 0.15030318240210044,
|
434 |
+
"learning_rate": 7.393939393939395e-05,
|
435 |
+
"loss": 1.2167,
|
436 |
+
"step": 61
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 0.11,
|
440 |
+
"grad_norm": 0.1651326066719482,
|
441 |
+
"learning_rate": 7.515151515151515e-05,
|
442 |
+
"loss": 1.3126,
|
443 |
+
"step": 62
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"epoch": 0.11,
|
447 |
+
"grad_norm": 0.1408250406479118,
|
448 |
+
"learning_rate": 7.636363636363637e-05,
|
449 |
+
"loss": 1.2891,
|
450 |
+
"step": 63
|
451 |
+
},
|
452 |
+
{
|
453 |
+
"epoch": 0.12,
|
454 |
+
"grad_norm": 0.21501384376905694,
|
455 |
+
"learning_rate": 7.757575757575758e-05,
|
456 |
+
"loss": 1.3019,
|
457 |
+
"step": 64
|
458 |
+
},
|
459 |
+
{
|
460 |
+
"epoch": 0.12,
|
461 |
+
"grad_norm": 0.1365168726167339,
|
462 |
+
"learning_rate": 7.878787878787879e-05,
|
463 |
+
"loss": 1.2498,
|
464 |
+
"step": 65
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"epoch": 0.12,
|
468 |
+
"grad_norm": 0.1431463689660936,
|
469 |
+
"learning_rate": 8e-05,
|
470 |
+
"loss": 1.2793,
|
471 |
+
"step": 66
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"epoch": 0.12,
|
475 |
+
"grad_norm": 0.13689045214286194,
|
476 |
+
"learning_rate": 8.121212121212121e-05,
|
477 |
+
"loss": 1.2295,
|
478 |
+
"step": 67
|
479 |
+
},
|
480 |
+
{
|
481 |
+
"epoch": 0.12,
|
482 |
+
"grad_norm": 0.13483608710081227,
|
483 |
+
"learning_rate": 8.242424242424243e-05,
|
484 |
+
"loss": 1.2258,
|
485 |
+
"step": 68
|
486 |
+
},
|
487 |
+
{
|
488 |
+
"epoch": 0.13,
|
489 |
+
"grad_norm": 0.13707618564415613,
|
490 |
+
"learning_rate": 8.363636363636364e-05,
|
491 |
+
"loss": 1.2252,
|
492 |
+
"step": 69
|
493 |
+
},
|
494 |
+
{
|
495 |
+
"epoch": 0.13,
|
496 |
+
"grad_norm": 0.13780236215967515,
|
497 |
+
"learning_rate": 8.484848484848486e-05,
|
498 |
+
"loss": 1.2565,
|
499 |
+
"step": 70
|
500 |
+
},
|
501 |
+
{
|
502 |
+
"epoch": 0.13,
|
503 |
+
"grad_norm": 0.14036805493494423,
|
504 |
+
"learning_rate": 8.606060606060606e-05,
|
505 |
+
"loss": 1.3023,
|
506 |
+
"step": 71
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"epoch": 0.13,
|
510 |
+
"grad_norm": 0.12776919439147982,
|
511 |
+
"learning_rate": 8.727272727272727e-05,
|
512 |
+
"loss": 1.2292,
|
513 |
+
"step": 72
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"epoch": 0.13,
|
517 |
+
"grad_norm": 0.1289941815481437,
|
518 |
+
"learning_rate": 8.848484848484849e-05,
|
519 |
+
"loss": 1.2191,
|
520 |
+
"step": 73
|
521 |
+
},
|
522 |
+
{
|
523 |
+
"epoch": 0.13,
|
524 |
+
"grad_norm": 0.13943952294847306,
|
525 |
+
"learning_rate": 8.96969696969697e-05,
|
526 |
+
"loss": 1.2915,
|
527 |
+
"step": 74
|
528 |
+
},
|
529 |
+
{
|
530 |
+
"epoch": 0.14,
|
531 |
+
"grad_norm": 0.1493528502117281,
|
532 |
+
"learning_rate": 9.090909090909092e-05,
|
533 |
+
"loss": 1.2797,
|
534 |
+
"step": 75
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 0.14,
|
538 |
+
"grad_norm": 0.1252401242451818,
|
539 |
+
"learning_rate": 9.212121212121214e-05,
|
540 |
+
"loss": 1.2552,
|
541 |
+
"step": 76
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"epoch": 0.14,
|
545 |
+
"grad_norm": 0.13969800467546992,
|
546 |
+
"learning_rate": 9.333333333333334e-05,
|
547 |
+
"loss": 1.3147,
|
548 |
+
"step": 77
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"epoch": 0.14,
|
552 |
+
"grad_norm": 0.1277258491470434,
|
553 |
+
"learning_rate": 9.454545454545455e-05,
|
554 |
+
"loss": 1.2089,
|
555 |
+
"step": 78
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"epoch": 0.14,
|
559 |
+
"grad_norm": 0.133041369314817,
|
560 |
+
"learning_rate": 9.575757575757576e-05,
|
561 |
+
"loss": 1.2761,
|
562 |
+
"step": 79
|
563 |
+
},
|
564 |
+
{
|
565 |
+
"epoch": 0.15,
|
566 |
+
"grad_norm": 0.14564572037181842,
|
567 |
+
"learning_rate": 9.696969696969698e-05,
|
568 |
+
"loss": 1.1901,
|
569 |
+
"step": 80
|
570 |
+
},
|
571 |
+
{
|
572 |
+
"epoch": 0.15,
|
573 |
+
"grad_norm": 0.13666505656492195,
|
574 |
+
"learning_rate": 9.818181818181818e-05,
|
575 |
+
"loss": 1.2615,
|
576 |
+
"step": 81
|
577 |
+
},
|
578 |
+
{
|
579 |
+
"epoch": 0.15,
|
580 |
+
"grad_norm": 0.135007805210003,
|
581 |
+
"learning_rate": 9.939393939393939e-05,
|
582 |
+
"loss": 1.2669,
|
583 |
+
"step": 82
|
584 |
+
},
|
585 |
+
{
|
586 |
+
"epoch": 0.15,
|
587 |
+
"grad_norm": 0.17287563365884975,
|
588 |
+
"learning_rate": 0.00010060606060606062,
|
589 |
+
"loss": 1.2669,
|
590 |
+
"step": 83
|
591 |
+
},
|
592 |
+
{
|
593 |
+
"epoch": 0.15,
|
594 |
+
"grad_norm": 0.12934306326048103,
|
595 |
+
"learning_rate": 0.00010181818181818181,
|
596 |
+
"loss": 1.1979,
|
597 |
+
"step": 84
|
598 |
+
},
|
599 |
+
{
|
600 |
+
"epoch": 0.15,
|
601 |
+
"grad_norm": 0.13517436169178096,
|
602 |
+
"learning_rate": 0.00010303030303030303,
|
603 |
+
"loss": 1.2226,
|
604 |
+
"step": 85
|
605 |
+
},
|
606 |
+
{
|
607 |
+
"epoch": 0.16,
|
608 |
+
"grad_norm": 0.12105351159271568,
|
609 |
+
"learning_rate": 0.00010424242424242425,
|
610 |
+
"loss": 1.1172,
|
611 |
+
"step": 86
|
612 |
+
},
|
613 |
+
{
|
614 |
+
"epoch": 0.16,
|
615 |
+
"grad_norm": 0.1281676431775383,
|
616 |
+
"learning_rate": 0.00010545454545454545,
|
617 |
+
"loss": 1.2046,
|
618 |
+
"step": 87
|
619 |
+
},
|
620 |
+
{
|
621 |
+
"epoch": 0.16,
|
622 |
+
"grad_norm": 0.11730963057933333,
|
623 |
+
"learning_rate": 0.00010666666666666667,
|
624 |
+
"loss": 1.1883,
|
625 |
+
"step": 88
|
626 |
+
},
|
627 |
+
{
|
628 |
+
"epoch": 0.16,
|
629 |
+
"grad_norm": 0.12655235108503246,
|
630 |
+
"learning_rate": 0.00010787878787878789,
|
631 |
+
"loss": 1.1331,
|
632 |
+
"step": 89
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"epoch": 0.16,
|
636 |
+
"grad_norm": 0.13047560307970027,
|
637 |
+
"learning_rate": 0.00010909090909090909,
|
638 |
+
"loss": 1.2731,
|
639 |
+
"step": 90
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 0.17,
|
643 |
+
"grad_norm": 0.12193522973752649,
|
644 |
+
"learning_rate": 0.00011030303030303031,
|
645 |
+
"loss": 1.2161,
|
646 |
+
"step": 91
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"epoch": 0.17,
|
650 |
+
"grad_norm": 0.12804360300116346,
|
651 |
+
"learning_rate": 0.00011151515151515153,
|
652 |
+
"loss": 1.3062,
|
653 |
+
"step": 92
|
654 |
+
},
|
655 |
+
{
|
656 |
+
"epoch": 0.17,
|
657 |
+
"grad_norm": 0.15991741754516206,
|
658 |
+
"learning_rate": 0.00011272727272727272,
|
659 |
+
"loss": 1.239,
|
660 |
+
"step": 93
|
661 |
+
},
|
662 |
+
{
|
663 |
+
"epoch": 0.17,
|
664 |
+
"grad_norm": 0.15140182244454561,
|
665 |
+
"learning_rate": 0.00011393939393939394,
|
666 |
+
"loss": 1.2349,
|
667 |
+
"step": 94
|
668 |
+
},
|
669 |
+
{
|
670 |
+
"epoch": 0.17,
|
671 |
+
"grad_norm": 0.12320241076263434,
|
672 |
+
"learning_rate": 0.00011515151515151516,
|
673 |
+
"loss": 1.2875,
|
674 |
+
"step": 95
|
675 |
+
},
|
676 |
+
{
|
677 |
+
"epoch": 0.17,
|
678 |
+
"grad_norm": 0.13235998458230466,
|
679 |
+
"learning_rate": 0.00011636363636363636,
|
680 |
+
"loss": 1.2218,
|
681 |
+
"step": 96
|
682 |
+
},
|
683 |
+
{
|
684 |
+
"epoch": 0.18,
|
685 |
+
"grad_norm": 0.11783688734798668,
|
686 |
+
"learning_rate": 0.00011757575757575758,
|
687 |
+
"loss": 1.1864,
|
688 |
+
"step": 97
|
689 |
+
},
|
690 |
+
{
|
691 |
+
"epoch": 0.18,
|
692 |
+
"grad_norm": 0.3151933420750235,
|
693 |
+
"learning_rate": 0.0001187878787878788,
|
694 |
+
"loss": 1.3023,
|
695 |
+
"step": 98
|
696 |
+
},
|
697 |
+
{
|
698 |
+
"epoch": 0.18,
|
699 |
+
"grad_norm": 0.12665632567219295,
|
700 |
+
"learning_rate": 0.00012,
|
701 |
+
"loss": 1.2249,
|
702 |
+
"step": 99
|
703 |
+
},
|
704 |
+
{
|
705 |
+
"epoch": 0.18,
|
706 |
+
"grad_norm": 0.1228886740460738,
|
707 |
+
"learning_rate": 0.00012121212121212122,
|
708 |
+
"loss": 1.2517,
|
709 |
+
"step": 100
|
710 |
+
},
|
711 |
+
{
|
712 |
+
"epoch": 0.18,
|
713 |
+
"grad_norm": 0.11892005244989344,
|
714 |
+
"learning_rate": 0.00012242424242424243,
|
715 |
+
"loss": 1.2586,
|
716 |
+
"step": 101
|
717 |
+
},
|
718 |
+
{
|
719 |
+
"epoch": 0.19,
|
720 |
+
"grad_norm": 0.1232340827222201,
|
721 |
+
"learning_rate": 0.00012363636363636364,
|
722 |
+
"loss": 1.3217,
|
723 |
+
"step": 102
|
724 |
+
},
|
725 |
+
{
|
726 |
+
"epoch": 0.19,
|
727 |
+
"grad_norm": 0.13837226869323116,
|
728 |
+
"learning_rate": 0.00012484848484848487,
|
729 |
+
"loss": 1.2693,
|
730 |
+
"step": 103
|
731 |
+
},
|
732 |
+
{
|
733 |
+
"epoch": 0.19,
|
734 |
+
"grad_norm": 0.12068217991774362,
|
735 |
+
"learning_rate": 0.00012606060606060605,
|
736 |
+
"loss": 1.2623,
|
737 |
+
"step": 104
|
738 |
+
},
|
739 |
+
{
|
740 |
+
"epoch": 0.19,
|
741 |
+
"grad_norm": 0.16779277284606545,
|
742 |
+
"learning_rate": 0.00012727272727272728,
|
743 |
+
"loss": 1.2415,
|
744 |
+
"step": 105
|
745 |
+
},
|
746 |
+
{
|
747 |
+
"epoch": 0.19,
|
748 |
+
"grad_norm": 0.13396891539963085,
|
749 |
+
"learning_rate": 0.0001284848484848485,
|
750 |
+
"loss": 1.2313,
|
751 |
+
"step": 106
|
752 |
+
},
|
753 |
+
{
|
754 |
+
"epoch": 0.19,
|
755 |
+
"grad_norm": 0.12457104490772812,
|
756 |
+
"learning_rate": 0.0001296969696969697,
|
757 |
+
"loss": 1.1758,
|
758 |
+
"step": 107
|
759 |
+
},
|
760 |
+
{
|
761 |
+
"epoch": 0.2,
|
762 |
+
"grad_norm": 0.12676816816563452,
|
763 |
+
"learning_rate": 0.00013090909090909093,
|
764 |
+
"loss": 1.2478,
|
765 |
+
"step": 108
|
766 |
+
},
|
767 |
+
{
|
768 |
+
"epoch": 0.2,
|
769 |
+
"grad_norm": 0.11973639622066906,
|
770 |
+
"learning_rate": 0.00013212121212121213,
|
771 |
+
"loss": 1.2335,
|
772 |
+
"step": 109
|
773 |
+
},
|
774 |
+
{
|
775 |
+
"epoch": 0.2,
|
776 |
+
"grad_norm": 0.1330159646034068,
|
777 |
+
"learning_rate": 0.00013333333333333334,
|
778 |
+
"loss": 1.26,
|
779 |
+
"step": 110
|
780 |
+
},
|
781 |
+
{
|
782 |
+
"epoch": 0.2,
|
783 |
+
"grad_norm": 0.1298003025338099,
|
784 |
+
"learning_rate": 0.00013454545454545455,
|
785 |
+
"loss": 1.1907,
|
786 |
+
"step": 111
|
787 |
+
},
|
788 |
+
{
|
789 |
+
"epoch": 0.2,
|
790 |
+
"grad_norm": 0.1226154813287666,
|
791 |
+
"learning_rate": 0.00013575757575757578,
|
792 |
+
"loss": 1.1807,
|
793 |
+
"step": 112
|
794 |
+
},
|
795 |
+
{
|
796 |
+
"epoch": 0.21,
|
797 |
+
"grad_norm": 0.12533753244302145,
|
798 |
+
"learning_rate": 0.00013696969696969696,
|
799 |
+
"loss": 1.2098,
|
800 |
+
"step": 113
|
801 |
+
},
|
802 |
+
{
|
803 |
+
"epoch": 0.21,
|
804 |
+
"grad_norm": 0.12673266503840944,
|
805 |
+
"learning_rate": 0.0001381818181818182,
|
806 |
+
"loss": 1.2265,
|
807 |
+
"step": 114
|
808 |
+
},
|
809 |
+
{
|
810 |
+
"epoch": 0.21,
|
811 |
+
"grad_norm": 0.1299039569361384,
|
812 |
+
"learning_rate": 0.0001393939393939394,
|
813 |
+
"loss": 1.2534,
|
814 |
+
"step": 115
|
815 |
+
},
|
816 |
+
{
|
817 |
+
"epoch": 0.21,
|
818 |
+
"grad_norm": 0.13023496663090803,
|
819 |
+
"learning_rate": 0.0001406060606060606,
|
820 |
+
"loss": 1.2453,
|
821 |
+
"step": 116
|
822 |
+
},
|
823 |
+
{
|
824 |
+
"epoch": 0.21,
|
825 |
+
"grad_norm": 0.12001793500864573,
|
826 |
+
"learning_rate": 0.00014181818181818184,
|
827 |
+
"loss": 1.1608,
|
828 |
+
"step": 117
|
829 |
+
},
|
830 |
+
{
|
831 |
+
"epoch": 0.21,
|
832 |
+
"grad_norm": 0.14561862193041028,
|
833 |
+
"learning_rate": 0.00014303030303030304,
|
834 |
+
"loss": 1.2233,
|
835 |
+
"step": 118
|
836 |
+
},
|
837 |
+
{
|
838 |
+
"epoch": 0.22,
|
839 |
+
"grad_norm": 0.12636130876430832,
|
840 |
+
"learning_rate": 0.00014424242424242425,
|
841 |
+
"loss": 1.2833,
|
842 |
+
"step": 119
|
843 |
+
},
|
844 |
+
{
|
845 |
+
"epoch": 0.22,
|
846 |
+
"grad_norm": 0.189556849271166,
|
847 |
+
"learning_rate": 0.00014545454545454546,
|
848 |
+
"loss": 1.3105,
|
849 |
+
"step": 120
|
850 |
+
},
|
851 |
+
{
|
852 |
+
"epoch": 0.22,
|
853 |
+
"grad_norm": 0.12409073764495662,
|
854 |
+
"learning_rate": 0.00014666666666666666,
|
855 |
+
"loss": 1.1534,
|
856 |
+
"step": 121
|
857 |
+
},
|
858 |
+
{
|
859 |
+
"epoch": 0.22,
|
860 |
+
"grad_norm": 0.12149212466969316,
|
861 |
+
"learning_rate": 0.0001478787878787879,
|
862 |
+
"loss": 1.3039,
|
863 |
+
"step": 122
|
864 |
+
},
|
865 |
+
{
|
866 |
+
"epoch": 0.22,
|
867 |
+
"grad_norm": 0.12147336887953522,
|
868 |
+
"learning_rate": 0.0001490909090909091,
|
869 |
+
"loss": 1.326,
|
870 |
+
"step": 123
|
871 |
+
},
|
872 |
+
{
|
873 |
+
"epoch": 0.23,
|
874 |
+
"grad_norm": 0.1176585016163167,
|
875 |
+
"learning_rate": 0.0001503030303030303,
|
876 |
+
"loss": 1.191,
|
877 |
+
"step": 124
|
878 |
+
},
|
879 |
+
{
|
880 |
+
"epoch": 0.23,
|
881 |
+
"grad_norm": 0.2066428974234372,
|
882 |
+
"learning_rate": 0.00015151515151515152,
|
883 |
+
"loss": 1.3054,
|
884 |
+
"step": 125
|
885 |
+
},
|
886 |
+
{
|
887 |
+
"epoch": 0.23,
|
888 |
+
"grad_norm": 0.29582724255710047,
|
889 |
+
"learning_rate": 0.00015272727272727275,
|
890 |
+
"loss": 1.2032,
|
891 |
+
"step": 126
|
892 |
+
},
|
893 |
+
{
|
894 |
+
"epoch": 0.23,
|
895 |
+
"grad_norm": 0.13084381204119358,
|
896 |
+
"learning_rate": 0.00015393939393939393,
|
897 |
+
"loss": 1.2289,
|
898 |
+
"step": 127
|
899 |
+
},
|
900 |
+
{
|
901 |
+
"epoch": 0.23,
|
902 |
+
"grad_norm": 0.1294157600411397,
|
903 |
+
"learning_rate": 0.00015515151515151516,
|
904 |
+
"loss": 1.2561,
|
905 |
+
"step": 128
|
906 |
+
},
|
907 |
+
{
|
908 |
+
"epoch": 0.23,
|
909 |
+
"grad_norm": 0.14039614543447027,
|
910 |
+
"learning_rate": 0.00015636363636363637,
|
911 |
+
"loss": 1.243,
|
912 |
+
"step": 129
|
913 |
+
},
|
914 |
+
{
|
915 |
+
"epoch": 0.24,
|
916 |
+
"grad_norm": 0.19939984917282128,
|
917 |
+
"learning_rate": 0.00015757575757575757,
|
918 |
+
"loss": 1.1286,
|
919 |
+
"step": 130
|
920 |
+
},
|
921 |
+
{
|
922 |
+
"epoch": 0.24,
|
923 |
+
"grad_norm": 0.14402764349968203,
|
924 |
+
"learning_rate": 0.0001587878787878788,
|
925 |
+
"loss": 1.1959,
|
926 |
+
"step": 131
|
927 |
+
},
|
928 |
+
{
|
929 |
+
"epoch": 0.24,
|
930 |
+
"grad_norm": 0.13970978861500938,
|
931 |
+
"learning_rate": 0.00016,
|
932 |
+
"loss": 1.1814,
|
933 |
+
"step": 132
|
934 |
+
},
|
935 |
+
{
|
936 |
+
"epoch": 0.24,
|
937 |
+
"grad_norm": 0.14539538472563127,
|
938 |
+
"learning_rate": 0.00016121212121212122,
|
939 |
+
"loss": 1.2317,
|
940 |
+
"step": 133
|
941 |
+
},
|
942 |
+
{
|
943 |
+
"epoch": 0.24,
|
944 |
+
"grad_norm": 0.13456425455391557,
|
945 |
+
"learning_rate": 0.00016242424242424243,
|
946 |
+
"loss": 1.2239,
|
947 |
+
"step": 134
|
948 |
+
},
|
949 |
+
{
|
950 |
+
"epoch": 0.25,
|
951 |
+
"grad_norm": 0.1314997837157779,
|
952 |
+
"learning_rate": 0.00016363636363636366,
|
953 |
+
"loss": 1.1986,
|
954 |
+
"step": 135
|
955 |
+
},
|
956 |
+
{
|
957 |
+
"epoch": 0.25,
|
958 |
+
"grad_norm": 0.14046946525591422,
|
959 |
+
"learning_rate": 0.00016484848484848487,
|
960 |
+
"loss": 1.2238,
|
961 |
+
"step": 136
|
962 |
+
},
|
963 |
+
{
|
964 |
+
"epoch": 0.25,
|
965 |
+
"grad_norm": 0.6095538041505763,
|
966 |
+
"learning_rate": 0.00016606060606060607,
|
967 |
+
"loss": 1.2332,
|
968 |
+
"step": 137
|
969 |
+
},
|
970 |
+
{
|
971 |
+
"epoch": 0.25,
|
972 |
+
"grad_norm": 0.17707289712054367,
|
973 |
+
"learning_rate": 0.00016727272727272728,
|
974 |
+
"loss": 1.2401,
|
975 |
+
"step": 138
|
976 |
+
},
|
977 |
+
{
|
978 |
+
"epoch": 0.25,
|
979 |
+
"grad_norm": 0.19335172179099247,
|
980 |
+
"learning_rate": 0.00016848484848484848,
|
981 |
+
"loss": 1.2361,
|
982 |
+
"step": 139
|
983 |
+
},
|
984 |
+
{
|
985 |
+
"epoch": 0.26,
|
986 |
+
"grad_norm": 0.13725591818701255,
|
987 |
+
"learning_rate": 0.00016969696969696972,
|
988 |
+
"loss": 1.193,
|
989 |
+
"step": 140
|
990 |
+
},
|
991 |
+
{
|
992 |
+
"epoch": 0.26,
|
993 |
+
"grad_norm": 0.15535575462507384,
|
994 |
+
"learning_rate": 0.0001709090909090909,
|
995 |
+
"loss": 1.2769,
|
996 |
+
"step": 141
|
997 |
+
},
|
998 |
+
{
|
999 |
+
"epoch": 0.26,
|
1000 |
+
"grad_norm": 0.14909436560898923,
|
1001 |
+
"learning_rate": 0.00017212121212121213,
|
1002 |
+
"loss": 1.2602,
|
1003 |
+
"step": 142
|
1004 |
+
},
|
1005 |
+
{
|
1006 |
+
"epoch": 0.26,
|
1007 |
+
"grad_norm": 0.15054368082407957,
|
1008 |
+
"learning_rate": 0.00017333333333333334,
|
1009 |
+
"loss": 1.2607,
|
1010 |
+
"step": 143
|
1011 |
+
},
|
1012 |
+
{
|
1013 |
+
"epoch": 0.26,
|
1014 |
+
"grad_norm": 0.13386897838741724,
|
1015 |
+
"learning_rate": 0.00017454545454545454,
|
1016 |
+
"loss": 1.168,
|
1017 |
+
"step": 144
|
1018 |
+
},
|
1019 |
+
{
|
1020 |
+
"epoch": 0.26,
|
1021 |
+
"grad_norm": 0.13567889528730145,
|
1022 |
+
"learning_rate": 0.00017575757575757578,
|
1023 |
+
"loss": 1.1984,
|
1024 |
+
"step": 145
|
1025 |
+
},
|
1026 |
+
{
|
1027 |
+
"epoch": 0.27,
|
1028 |
+
"grad_norm": 0.13994382298003089,
|
1029 |
+
"learning_rate": 0.00017696969696969698,
|
1030 |
+
"loss": 1.2795,
|
1031 |
+
"step": 146
|
1032 |
+
},
|
1033 |
+
{
|
1034 |
+
"epoch": 0.27,
|
1035 |
+
"grad_norm": 0.13941573210713187,
|
1036 |
+
"learning_rate": 0.0001781818181818182,
|
1037 |
+
"loss": 1.2303,
|
1038 |
+
"step": 147
|
1039 |
+
},
|
1040 |
+
{
|
1041 |
+
"epoch": 0.27,
|
1042 |
+
"grad_norm": 0.18302605925485763,
|
1043 |
+
"learning_rate": 0.0001793939393939394,
|
1044 |
+
"loss": 1.2696,
|
1045 |
+
"step": 148
|
1046 |
+
},
|
1047 |
+
{
|
1048 |
+
"epoch": 0.27,
|
1049 |
+
"grad_norm": 0.1547402223275396,
|
1050 |
+
"learning_rate": 0.00018060606060606063,
|
1051 |
+
"loss": 1.1276,
|
1052 |
+
"step": 149
|
1053 |
+
},
|
1054 |
+
{
|
1055 |
+
"epoch": 0.27,
|
1056 |
+
"grad_norm": 0.19947594494850646,
|
1057 |
+
"learning_rate": 0.00018181818181818183,
|
1058 |
+
"loss": 1.271,
|
1059 |
+
"step": 150
|
1060 |
+
},
|
1061 |
+
{
|
1062 |
+
"epoch": 0.28,
|
1063 |
+
"grad_norm": 0.1517101450465788,
|
1064 |
+
"learning_rate": 0.00018303030303030304,
|
1065 |
+
"loss": 1.2193,
|
1066 |
+
"step": 151
|
1067 |
+
},
|
1068 |
+
{
|
1069 |
+
"epoch": 0.28,
|
1070 |
+
"grad_norm": 0.19251063116857103,
|
1071 |
+
"learning_rate": 0.00018424242424242427,
|
1072 |
+
"loss": 1.2703,
|
1073 |
+
"step": 152
|
1074 |
+
},
|
1075 |
+
{
|
1076 |
+
"epoch": 0.28,
|
1077 |
+
"grad_norm": 0.16789099560498666,
|
1078 |
+
"learning_rate": 0.00018545454545454545,
|
1079 |
+
"loss": 1.2244,
|
1080 |
+
"step": 153
|
1081 |
+
},
|
1082 |
+
{
|
1083 |
+
"epoch": 0.28,
|
1084 |
+
"grad_norm": 0.14907376557922342,
|
1085 |
+
"learning_rate": 0.0001866666666666667,
|
1086 |
+
"loss": 1.264,
|
1087 |
+
"step": 154
|
1088 |
+
},
|
1089 |
+
{
|
1090 |
+
"epoch": 0.28,
|
1091 |
+
"grad_norm": 0.14276598263036905,
|
1092 |
+
"learning_rate": 0.0001878787878787879,
|
1093 |
+
"loss": 1.2545,
|
1094 |
+
"step": 155
|
1095 |
+
},
|
1096 |
+
{
|
1097 |
+
"epoch": 0.28,
|
1098 |
+
"grad_norm": 0.14526753816999002,
|
1099 |
+
"learning_rate": 0.0001890909090909091,
|
1100 |
+
"loss": 1.2912,
|
1101 |
+
"step": 156
|
1102 |
+
},
|
1103 |
+
{
|
1104 |
+
"epoch": 0.29,
|
1105 |
+
"grad_norm": 0.1627048894660859,
|
1106 |
+
"learning_rate": 0.0001903030303030303,
|
1107 |
+
"loss": 1.2573,
|
1108 |
+
"step": 157
|
1109 |
+
},
|
1110 |
+
{
|
1111 |
+
"epoch": 0.29,
|
1112 |
+
"grad_norm": 0.16405036632332695,
|
1113 |
+
"learning_rate": 0.0001915151515151515,
|
1114 |
+
"loss": 1.2359,
|
1115 |
+
"step": 158
|
1116 |
+
},
|
1117 |
+
{
|
1118 |
+
"epoch": 0.29,
|
1119 |
+
"grad_norm": 0.14533427219788658,
|
1120 |
+
"learning_rate": 0.00019272727272727274,
|
1121 |
+
"loss": 1.1718,
|
1122 |
+
"step": 159
|
1123 |
+
},
|
1124 |
+
{
|
1125 |
+
"epoch": 0.29,
|
1126 |
+
"grad_norm": 0.13802382666732702,
|
1127 |
+
"learning_rate": 0.00019393939393939395,
|
1128 |
+
"loss": 1.2297,
|
1129 |
+
"step": 160
|
1130 |
+
},
|
1131 |
+
{
|
1132 |
+
"epoch": 0.29,
|
1133 |
+
"grad_norm": 0.15620193618511755,
|
1134 |
+
"learning_rate": 0.00019515151515151516,
|
1135 |
+
"loss": 1.2287,
|
1136 |
+
"step": 161
|
1137 |
+
},
|
1138 |
+
{
|
1139 |
+
"epoch": 0.3,
|
1140 |
+
"grad_norm": 0.1401696295700075,
|
1141 |
+
"learning_rate": 0.00019636363636363636,
|
1142 |
+
"loss": 1.2231,
|
1143 |
+
"step": 162
|
1144 |
+
},
|
1145 |
+
{
|
1146 |
+
"epoch": 0.3,
|
1147 |
+
"grad_norm": 0.15816133304035035,
|
1148 |
+
"learning_rate": 0.0001975757575757576,
|
1149 |
+
"loss": 1.2804,
|
1150 |
+
"step": 163
|
1151 |
+
},
|
1152 |
+
{
|
1153 |
+
"epoch": 0.3,
|
1154 |
+
"grad_norm": 0.14626275180535692,
|
1155 |
+
"learning_rate": 0.00019878787878787878,
|
1156 |
+
"loss": 1.2115,
|
1157 |
+
"step": 164
|
1158 |
+
},
|
1159 |
+
{
|
1160 |
+
"epoch": 0.3,
|
1161 |
+
"grad_norm": 0.13100680398305042,
|
1162 |
+
"learning_rate": 0.0002,
|
1163 |
+
"loss": 1.2524,
|
1164 |
+
"step": 165
|
1165 |
+
},
|
1166 |
+
{
|
1167 |
+
"epoch": 0.3,
|
1168 |
+
"grad_norm": 0.14849458896148926,
|
1169 |
+
"learning_rate": 0.00019999977531546566,
|
1170 |
+
"loss": 1.2161,
|
1171 |
+
"step": 166
|
1172 |
+
},
|
1173 |
+
{
|
1174 |
+
"epoch": 0.3,
|
1175 |
+
"grad_norm": 0.13628125499037252,
|
1176 |
+
"learning_rate": 0.0001999991012628722,
|
1177 |
+
"loss": 1.2452,
|
1178 |
+
"step": 167
|
1179 |
+
},
|
1180 |
+
{
|
1181 |
+
"epoch": 0.31,
|
1182 |
+
"grad_norm": 0.18617698759086793,
|
1183 |
+
"learning_rate": 0.00019999797784524866,
|
1184 |
+
"loss": 1.2197,
|
1185 |
+
"step": 168
|
1186 |
+
},
|
1187 |
+
{
|
1188 |
+
"epoch": 0.31,
|
1189 |
+
"grad_norm": 0.14416004826313944,
|
1190 |
+
"learning_rate": 0.00019999640506764336,
|
1191 |
+
"loss": 1.2796,
|
1192 |
+
"step": 169
|
1193 |
+
},
|
1194 |
+
{
|
1195 |
+
"epoch": 0.31,
|
1196 |
+
"grad_norm": 0.13807081386834757,
|
1197 |
+
"learning_rate": 0.0001999943829371238,
|
1198 |
+
"loss": 1.2732,
|
1199 |
+
"step": 170
|
1200 |
+
},
|
1201 |
+
{
|
1202 |
+
"epoch": 0.31,
|
1203 |
+
"grad_norm": 0.16526927436841996,
|
1204 |
+
"learning_rate": 0.0001999919114627769,
|
1205 |
+
"loss": 1.3016,
|
1206 |
+
"step": 171
|
1207 |
+
},
|
1208 |
+
{
|
1209 |
+
"epoch": 0.31,
|
1210 |
+
"grad_norm": 0.14479672734919855,
|
1211 |
+
"learning_rate": 0.0001999889906557086,
|
1212 |
+
"loss": 1.3106,
|
1213 |
+
"step": 172
|
1214 |
+
},
|
1215 |
+
{
|
1216 |
+
"epoch": 0.32,
|
1217 |
+
"grad_norm": 0.13829284006072087,
|
1218 |
+
"learning_rate": 0.00019998562052904418,
|
1219 |
+
"loss": 1.3355,
|
1220 |
+
"step": 173
|
1221 |
+
},
|
1222 |
+
{
|
1223 |
+
"epoch": 0.32,
|
1224 |
+
"grad_norm": 0.13484630104616105,
|
1225 |
+
"learning_rate": 0.0001999818010979279,
|
1226 |
+
"loss": 1.1928,
|
1227 |
+
"step": 174
|
1228 |
+
},
|
1229 |
+
{
|
1230 |
+
"epoch": 0.32,
|
1231 |
+
"grad_norm": 0.14972770674556948,
|
1232 |
+
"learning_rate": 0.00019997753237952317,
|
1233 |
+
"loss": 1.2559,
|
1234 |
+
"step": 175
|
1235 |
+
},
|
1236 |
+
{
|
1237 |
+
"epoch": 0.32,
|
1238 |
+
"grad_norm": 0.13378525020528342,
|
1239 |
+
"learning_rate": 0.00019997281439301218,
|
1240 |
+
"loss": 1.2673,
|
1241 |
+
"step": 176
|
1242 |
+
},
|
1243 |
+
{
|
1244 |
+
"epoch": 0.32,
|
1245 |
+
"grad_norm": 0.13242998699125438,
|
1246 |
+
"learning_rate": 0.00019996764715959618,
|
1247 |
+
"loss": 1.2272,
|
1248 |
+
"step": 177
|
1249 |
+
},
|
1250 |
+
{
|
1251 |
+
"epoch": 0.32,
|
1252 |
+
"grad_norm": 0.12938881004364342,
|
1253 |
+
"learning_rate": 0.00019996203070249516,
|
1254 |
+
"loss": 1.2035,
|
1255 |
+
"step": 178
|
1256 |
+
},
|
1257 |
+
{
|
1258 |
+
"epoch": 0.33,
|
1259 |
+
"grad_norm": 0.13388032350164566,
|
1260 |
+
"learning_rate": 0.00019995596504694763,
|
1261 |
+
"loss": 1.2642,
|
1262 |
+
"step": 179
|
1263 |
+
},
|
1264 |
+
{
|
1265 |
+
"epoch": 0.33,
|
1266 |
+
"grad_norm": 0.13893372222140873,
|
1267 |
+
"learning_rate": 0.00019994945022021082,
|
1268 |
+
"loss": 1.2235,
|
1269 |
+
"step": 180
|
1270 |
+
},
|
1271 |
+
{
|
1272 |
+
"epoch": 0.33,
|
1273 |
+
"grad_norm": 0.14131710715500717,
|
1274 |
+
"learning_rate": 0.00019994248625156038,
|
1275 |
+
"loss": 1.1095,
|
1276 |
+
"step": 181
|
1277 |
+
},
|
1278 |
+
{
|
1279 |
+
"epoch": 0.33,
|
1280 |
+
"grad_norm": 0.13448100369103572,
|
1281 |
+
"learning_rate": 0.0001999350731722902,
|
1282 |
+
"loss": 1.1879,
|
1283 |
+
"step": 182
|
1284 |
+
},
|
1285 |
+
{
|
1286 |
+
"epoch": 0.33,
|
1287 |
+
"grad_norm": 0.13862444003216381,
|
1288 |
+
"learning_rate": 0.00019992721101571236,
|
1289 |
+
"loss": 1.2227,
|
1290 |
+
"step": 183
|
1291 |
+
},
|
1292 |
+
{
|
1293 |
+
"epoch": 0.34,
|
1294 |
+
"grad_norm": 0.13506115547921224,
|
1295 |
+
"learning_rate": 0.00019991889981715698,
|
1296 |
+
"loss": 1.2833,
|
1297 |
+
"step": 184
|
1298 |
+
},
|
1299 |
+
{
|
1300 |
+
"epoch": 0.34,
|
1301 |
+
"grad_norm": 0.13174857502600473,
|
1302 |
+
"learning_rate": 0.00019991013961397197,
|
1303 |
+
"loss": 1.2394,
|
1304 |
+
"step": 185
|
1305 |
+
},
|
1306 |
+
{
|
1307 |
+
"epoch": 0.34,
|
1308 |
+
"grad_norm": 0.1290276308949748,
|
1309 |
+
"learning_rate": 0.00019990093044552304,
|
1310 |
+
"loss": 1.2659,
|
1311 |
+
"step": 186
|
1312 |
+
},
|
1313 |
+
{
|
1314 |
+
"epoch": 0.34,
|
1315 |
+
"grad_norm": 0.1388159912078538,
|
1316 |
+
"learning_rate": 0.0001998912723531933,
|
1317 |
+
"loss": 1.3052,
|
1318 |
+
"step": 187
|
1319 |
+
},
|
1320 |
+
{
|
1321 |
+
"epoch": 0.34,
|
1322 |
+
"grad_norm": 0.1256806205303357,
|
1323 |
+
"learning_rate": 0.00019988116538038325,
|
1324 |
+
"loss": 1.2031,
|
1325 |
+
"step": 188
|
1326 |
+
},
|
1327 |
+
{
|
1328 |
+
"epoch": 0.34,
|
1329 |
+
"grad_norm": 0.13256850855084143,
|
1330 |
+
"learning_rate": 0.00019987060957251047,
|
1331 |
+
"loss": 1.211,
|
1332 |
+
"step": 189
|
1333 |
+
},
|
1334 |
+
{
|
1335 |
+
"epoch": 0.35,
|
1336 |
+
"grad_norm": 0.13197363789890235,
|
1337 |
+
"learning_rate": 0.0001998596049770095,
|
1338 |
+
"loss": 1.2256,
|
1339 |
+
"step": 190
|
1340 |
+
},
|
1341 |
+
{
|
1342 |
+
"epoch": 0.35,
|
1343 |
+
"grad_norm": 0.13277364593883098,
|
1344 |
+
"learning_rate": 0.00019984815164333163,
|
1345 |
+
"loss": 1.2174,
|
1346 |
+
"step": 191
|
1347 |
+
},
|
1348 |
+
{
|
1349 |
+
"epoch": 0.35,
|
1350 |
+
"grad_norm": 0.13838072824574454,
|
1351 |
+
"learning_rate": 0.00019983624962294458,
|
1352 |
+
"loss": 1.3128,
|
1353 |
+
"step": 192
|
1354 |
+
},
|
1355 |
+
{
|
1356 |
+
"epoch": 0.35,
|
1357 |
+
"grad_norm": 0.13524759737199996,
|
1358 |
+
"learning_rate": 0.0001998238989693323,
|
1359 |
+
"loss": 1.1806,
|
1360 |
+
"step": 193
|
1361 |
+
},
|
1362 |
+
{
|
1363 |
+
"epoch": 0.35,
|
1364 |
+
"grad_norm": 0.12669987683723832,
|
1365 |
+
"learning_rate": 0.0001998110997379949,
|
1366 |
+
"loss": 1.2171,
|
1367 |
+
"step": 194
|
1368 |
+
},
|
1369 |
+
{
|
1370 |
+
"epoch": 0.36,
|
1371 |
+
"grad_norm": 0.1461834612451898,
|
1372 |
+
"learning_rate": 0.00019979785198644806,
|
1373 |
+
"loss": 1.2231,
|
1374 |
+
"step": 195
|
1375 |
+
},
|
1376 |
+
{
|
1377 |
+
"epoch": 0.36,
|
1378 |
+
"grad_norm": 0.13265793664862735,
|
1379 |
+
"learning_rate": 0.0001997841557742232,
|
1380 |
+
"loss": 1.1718,
|
1381 |
+
"step": 196
|
1382 |
+
},
|
1383 |
+
{
|
1384 |
+
"epoch": 0.36,
|
1385 |
+
"grad_norm": 0.12842971557690963,
|
1386 |
+
"learning_rate": 0.00019977001116286674,
|
1387 |
+
"loss": 1.2758,
|
1388 |
+
"step": 197
|
1389 |
+
},
|
1390 |
+
{
|
1391 |
+
"epoch": 0.36,
|
1392 |
+
"grad_norm": 0.12188365921206967,
|
1393 |
+
"learning_rate": 0.00019975541821594026,
|
1394 |
+
"loss": 1.2457,
|
1395 |
+
"step": 198
|
1396 |
+
},
|
1397 |
+
{
|
1398 |
+
"epoch": 0.36,
|
1399 |
+
"grad_norm": 0.12679949330022622,
|
1400 |
+
"learning_rate": 0.00019974037699901993,
|
1401 |
+
"loss": 1.1825,
|
1402 |
+
"step": 199
|
1403 |
+
},
|
1404 |
+
{
|
1405 |
+
"epoch": 0.36,
|
1406 |
+
"grad_norm": 0.12949746150357985,
|
1407 |
+
"learning_rate": 0.00019972488757969635,
|
1408 |
+
"loss": 1.2666,
|
1409 |
+
"step": 200
|
1410 |
+
},
|
1411 |
+
{
|
1412 |
+
"epoch": 0.37,
|
1413 |
+
"grad_norm": 0.1363496149379173,
|
1414 |
+
"learning_rate": 0.00019970895002757413,
|
1415 |
+
"loss": 1.2031,
|
1416 |
+
"step": 201
|
1417 |
+
},
|
1418 |
+
{
|
1419 |
+
"epoch": 0.37,
|
1420 |
+
"grad_norm": 0.14218340110669314,
|
1421 |
+
"learning_rate": 0.0001996925644142717,
|
1422 |
+
"loss": 1.3073,
|
1423 |
+
"step": 202
|
1424 |
+
},
|
1425 |
+
{
|
1426 |
+
"epoch": 0.37,
|
1427 |
+
"grad_norm": 0.14234535389443218,
|
1428 |
+
"learning_rate": 0.00019967573081342103,
|
1429 |
+
"loss": 1.2444,
|
1430 |
+
"step": 203
|
1431 |
+
},
|
1432 |
+
{
|
1433 |
+
"epoch": 0.37,
|
1434 |
+
"grad_norm": 0.12866113026310516,
|
1435 |
+
"learning_rate": 0.000199658449300667,
|
1436 |
+
"loss": 1.2257,
|
1437 |
+
"step": 204
|
1438 |
+
},
|
1439 |
+
{
|
1440 |
+
"epoch": 0.37,
|
1441 |
+
"grad_norm": 0.1324053366295965,
|
1442 |
+
"learning_rate": 0.00019964071995366744,
|
1443 |
+
"loss": 1.2374,
|
1444 |
+
"step": 205
|
1445 |
+
},
|
1446 |
+
{
|
1447 |
+
"epoch": 0.38,
|
1448 |
+
"grad_norm": 0.12906841330218152,
|
1449 |
+
"learning_rate": 0.00019962254285209254,
|
1450 |
+
"loss": 1.2334,
|
1451 |
+
"step": 206
|
1452 |
+
},
|
1453 |
+
{
|
1454 |
+
"epoch": 0.38,
|
1455 |
+
"grad_norm": 0.13620873131846425,
|
1456 |
+
"learning_rate": 0.00019960391807762463,
|
1457 |
+
"loss": 1.242,
|
1458 |
+
"step": 207
|
1459 |
+
},
|
1460 |
+
{
|
1461 |
+
"epoch": 0.38,
|
1462 |
+
"grad_norm": 0.14877366842835116,
|
1463 |
+
"learning_rate": 0.00019958484571395757,
|
1464 |
+
"loss": 1.1772,
|
1465 |
+
"step": 208
|
1466 |
+
},
|
1467 |
+
{
|
1468 |
+
"epoch": 0.38,
|
1469 |
+
"grad_norm": 0.13914108740445985,
|
1470 |
+
"learning_rate": 0.00019956532584679675,
|
1471 |
+
"loss": 1.2734,
|
1472 |
+
"step": 209
|
1473 |
+
},
|
1474 |
+
{
|
1475 |
+
"epoch": 0.38,
|
1476 |
+
"grad_norm": 0.13198394930310692,
|
1477 |
+
"learning_rate": 0.00019954535856385837,
|
1478 |
+
"loss": 1.1728,
|
1479 |
+
"step": 210
|
1480 |
+
},
|
1481 |
+
{
|
1482 |
+
"epoch": 0.38,
|
1483 |
+
"grad_norm": 0.3807736597404611,
|
1484 |
+
"learning_rate": 0.0001995249439548693,
|
1485 |
+
"loss": 1.2089,
|
1486 |
+
"step": 211
|
1487 |
+
},
|
1488 |
+
{
|
1489 |
+
"epoch": 0.39,
|
1490 |
+
"grad_norm": 0.1682550557564819,
|
1491 |
+
"learning_rate": 0.00019950408211156636,
|
1492 |
+
"loss": 1.2423,
|
1493 |
+
"step": 212
|
1494 |
+
},
|
1495 |
+
{
|
1496 |
+
"epoch": 0.39,
|
1497 |
+
"grad_norm": 0.2102196862007261,
|
1498 |
+
"learning_rate": 0.0001994827731276963,
|
1499 |
+
"loss": 1.2096,
|
1500 |
+
"step": 213
|
1501 |
+
},
|
1502 |
+
{
|
1503 |
+
"epoch": 0.39,
|
1504 |
+
"grad_norm": 0.154346739470422,
|
1505 |
+
"learning_rate": 0.00019946101709901514,
|
1506 |
+
"loss": 1.2847,
|
1507 |
+
"step": 214
|
1508 |
+
},
|
1509 |
+
{
|
1510 |
+
"epoch": 0.39,
|
1511 |
+
"grad_norm": 0.16416668358293746,
|
1512 |
+
"learning_rate": 0.0001994388141232876,
|
1513 |
+
"loss": 1.2503,
|
1514 |
+
"step": 215
|
1515 |
+
},
|
1516 |
+
{
|
1517 |
+
"epoch": 0.39,
|
1518 |
+
"grad_norm": 0.13134349458231093,
|
1519 |
+
"learning_rate": 0.0001994161643002871,
|
1520 |
+
"loss": 1.1231,
|
1521 |
+
"step": 216
|
1522 |
+
},
|
1523 |
+
{
|
1524 |
+
"epoch": 0.4,
|
1525 |
+
"grad_norm": 0.15083246389185287,
|
1526 |
+
"learning_rate": 0.00019939306773179497,
|
1527 |
+
"loss": 1.1614,
|
1528 |
+
"step": 217
|
1529 |
+
},
|
1530 |
+
{
|
1531 |
+
"epoch": 0.4,
|
1532 |
+
"grad_norm": 0.1742387260929692,
|
1533 |
+
"learning_rate": 0.00019936952452159995,
|
1534 |
+
"loss": 1.3568,
|
1535 |
+
"step": 218
|
1536 |
+
},
|
1537 |
+
{
|
1538 |
+
"epoch": 0.4,
|
1539 |
+
"grad_norm": 0.18146911432436974,
|
1540 |
+
"learning_rate": 0.00019934553477549794,
|
1541 |
+
"loss": 1.2686,
|
1542 |
+
"step": 219
|
1543 |
+
},
|
1544 |
+
{
|
1545 |
+
"epoch": 0.4,
|
1546 |
+
"grad_norm": 0.1393593447949332,
|
1547 |
+
"learning_rate": 0.00019932109860129154,
|
1548 |
+
"loss": 1.1141,
|
1549 |
+
"step": 220
|
1550 |
+
},
|
1551 |
+
{
|
1552 |
+
"epoch": 0.4,
|
1553 |
+
"grad_norm": 0.14856124153987935,
|
1554 |
+
"learning_rate": 0.00019929621610878927,
|
1555 |
+
"loss": 1.234,
|
1556 |
+
"step": 221
|
1557 |
+
},
|
1558 |
+
{
|
1559 |
+
"epoch": 0.4,
|
1560 |
+
"grad_norm": 0.14820851831477327,
|
1561 |
+
"learning_rate": 0.0001992708874098054,
|
1562 |
+
"loss": 1.2069,
|
1563 |
+
"step": 222
|
1564 |
+
},
|
1565 |
+
{
|
1566 |
+
"epoch": 0.41,
|
1567 |
+
"grad_norm": 0.17893142790958147,
|
1568 |
+
"learning_rate": 0.00019924511261815926,
|
1569 |
+
"loss": 1.1278,
|
1570 |
+
"step": 223
|
1571 |
+
},
|
1572 |
+
{
|
1573 |
+
"epoch": 0.41,
|
1574 |
+
"grad_norm": 0.14573658703265605,
|
1575 |
+
"learning_rate": 0.00019921889184967476,
|
1576 |
+
"loss": 1.2292,
|
1577 |
+
"step": 224
|
1578 |
+
},
|
1579 |
+
{
|
1580 |
+
"epoch": 0.41,
|
1581 |
+
"grad_norm": 0.15282321197574994,
|
1582 |
+
"learning_rate": 0.00019919222522217996,
|
1583 |
+
"loss": 1.2482,
|
1584 |
+
"step": 225
|
1585 |
+
},
|
1586 |
+
{
|
1587 |
+
"epoch": 0.41,
|
1588 |
+
"grad_norm": 0.16342112084119492,
|
1589 |
+
"learning_rate": 0.00019916511285550642,
|
1590 |
+
"loss": 1.2172,
|
1591 |
+
"step": 226
|
1592 |
+
},
|
1593 |
+
{
|
1594 |
+
"epoch": 0.41,
|
1595 |
+
"grad_norm": 0.1475889153814455,
|
1596 |
+
"learning_rate": 0.00019913755487148876,
|
1597 |
+
"loss": 1.1747,
|
1598 |
+
"step": 227
|
1599 |
+
},
|
1600 |
+
{
|
1601 |
+
"epoch": 0.42,
|
1602 |
+
"grad_norm": 0.163738064491857,
|
1603 |
+
"learning_rate": 0.00019910955139396396,
|
1604 |
+
"loss": 1.3007,
|
1605 |
+
"step": 228
|
1606 |
+
},
|
1607 |
+
{
|
1608 |
+
"epoch": 0.42,
|
1609 |
+
"grad_norm": 0.14427856196022704,
|
1610 |
+
"learning_rate": 0.00019908110254877106,
|
1611 |
+
"loss": 1.2464,
|
1612 |
+
"step": 229
|
1613 |
+
},
|
1614 |
+
{
|
1615 |
+
"epoch": 0.42,
|
1616 |
+
"grad_norm": 0.20204742660246344,
|
1617 |
+
"learning_rate": 0.00019905220846375032,
|
1618 |
+
"loss": 1.2515,
|
1619 |
+
"step": 230
|
1620 |
+
},
|
1621 |
+
{
|
1622 |
+
"epoch": 0.42,
|
1623 |
+
"grad_norm": 0.15134144918251685,
|
1624 |
+
"learning_rate": 0.0001990228692687429,
|
1625 |
+
"loss": 1.1786,
|
1626 |
+
"step": 231
|
1627 |
+
},
|
1628 |
+
{
|
1629 |
+
"epoch": 0.42,
|
1630 |
+
"grad_norm": 0.1636590177812163,
|
1631 |
+
"learning_rate": 0.00019899308509558998,
|
1632 |
+
"loss": 1.1974,
|
1633 |
+
"step": 232
|
1634 |
+
},
|
1635 |
+
{
|
1636 |
+
"epoch": 0.42,
|
1637 |
+
"grad_norm": 0.15552319776955892,
|
1638 |
+
"learning_rate": 0.00019896285607813244,
|
1639 |
+
"loss": 1.2308,
|
1640 |
+
"step": 233
|
1641 |
+
},
|
1642 |
+
{
|
1643 |
+
"epoch": 0.43,
|
1644 |
+
"grad_norm": 0.17104898009833774,
|
1645 |
+
"learning_rate": 0.00019893218235221015,
|
1646 |
+
"loss": 1.2828,
|
1647 |
+
"step": 234
|
1648 |
+
},
|
1649 |
+
{
|
1650 |
+
"epoch": 0.43,
|
1651 |
+
"grad_norm": 0.16387378763964267,
|
1652 |
+
"learning_rate": 0.00019890106405566138,
|
1653 |
+
"loss": 1.2779,
|
1654 |
+
"step": 235
|
1655 |
+
},
|
1656 |
+
{
|
1657 |
+
"epoch": 0.43,
|
1658 |
+
"grad_norm": 0.14622126798612248,
|
1659 |
+
"learning_rate": 0.00019886950132832207,
|
1660 |
+
"loss": 1.2894,
|
1661 |
+
"step": 236
|
1662 |
+
},
|
1663 |
+
{
|
1664 |
+
"epoch": 0.43,
|
1665 |
+
"grad_norm": 0.16619841547518147,
|
1666 |
+
"learning_rate": 0.0001988374943120254,
|
1667 |
+
"loss": 1.2133,
|
1668 |
+
"step": 237
|
1669 |
+
},
|
1670 |
+
{
|
1671 |
+
"epoch": 0.43,
|
1672 |
+
"grad_norm": 0.12664832399697545,
|
1673 |
+
"learning_rate": 0.00019880504315060096,
|
1674 |
+
"loss": 1.1807,
|
1675 |
+
"step": 238
|
1676 |
+
},
|
1677 |
+
{
|
1678 |
+
"epoch": 0.44,
|
1679 |
+
"grad_norm": 0.2015108381613456,
|
1680 |
+
"learning_rate": 0.00019877214798987426,
|
1681 |
+
"loss": 1.1876,
|
1682 |
+
"step": 239
|
1683 |
+
},
|
1684 |
+
{
|
1685 |
+
"epoch": 0.44,
|
1686 |
+
"grad_norm": 0.14468620723711506,
|
1687 |
+
"learning_rate": 0.00019873880897766598,
|
1688 |
+
"loss": 1.1883,
|
1689 |
+
"step": 240
|
1690 |
+
},
|
1691 |
+
{
|
1692 |
+
"epoch": 0.44,
|
1693 |
+
"grad_norm": 0.1549018650770757,
|
1694 |
+
"learning_rate": 0.00019870502626379127,
|
1695 |
+
"loss": 1.2896,
|
1696 |
+
"step": 241
|
1697 |
+
},
|
1698 |
+
{
|
1699 |
+
"epoch": 0.44,
|
1700 |
+
"grad_norm": 0.1492917963684983,
|
1701 |
+
"learning_rate": 0.0001986708000000593,
|
1702 |
+
"loss": 1.2102,
|
1703 |
+
"step": 242
|
1704 |
+
},
|
1705 |
+
{
|
1706 |
+
"epoch": 0.44,
|
1707 |
+
"grad_norm": 0.178606606459489,
|
1708 |
+
"learning_rate": 0.00019863613034027224,
|
1709 |
+
"loss": 1.2292,
|
1710 |
+
"step": 243
|
1711 |
+
},
|
1712 |
+
{
|
1713 |
+
"epoch": 0.44,
|
1714 |
+
"grad_norm": 0.206170239681528,
|
1715 |
+
"learning_rate": 0.00019860101744022485,
|
1716 |
+
"loss": 1.2666,
|
1717 |
+
"step": 244
|
1718 |
+
},
|
1719 |
+
{
|
1720 |
+
"epoch": 0.45,
|
1721 |
+
"grad_norm": 0.13741043007948167,
|
1722 |
+
"learning_rate": 0.0001985654614577036,
|
1723 |
+
"loss": 1.2022,
|
1724 |
+
"step": 245
|
1725 |
+
},
|
1726 |
+
{
|
1727 |
+
"epoch": 0.45,
|
1728 |
+
"grad_norm": 0.1595080658199459,
|
1729 |
+
"learning_rate": 0.0001985294625524861,
|
1730 |
+
"loss": 1.1203,
|
1731 |
+
"step": 246
|
1732 |
+
},
|
1733 |
+
{
|
1734 |
+
"epoch": 0.45,
|
1735 |
+
"grad_norm": 0.13929705183853777,
|
1736 |
+
"learning_rate": 0.00019849302088634034,
|
1737 |
+
"loss": 1.1505,
|
1738 |
+
"step": 247
|
1739 |
+
},
|
1740 |
+
{
|
1741 |
+
"epoch": 0.45,
|
1742 |
+
"grad_norm": 0.14045247607912964,
|
1743 |
+
"learning_rate": 0.00019845613662302383,
|
1744 |
+
"loss": 1.1897,
|
1745 |
+
"step": 248
|
1746 |
+
},
|
1747 |
+
{
|
1748 |
+
"epoch": 0.45,
|
1749 |
+
"grad_norm": 0.15002651347444407,
|
1750 |
+
"learning_rate": 0.00019841880992828306,
|
1751 |
+
"loss": 1.2133,
|
1752 |
+
"step": 249
|
1753 |
+
},
|
1754 |
+
{
|
1755 |
+
"epoch": 0.46,
|
1756 |
+
"grad_norm": 0.1567929487810952,
|
1757 |
+
"learning_rate": 0.00019838104096985267,
|
1758 |
+
"loss": 1.129,
|
1759 |
+
"step": 250
|
1760 |
+
},
|
1761 |
+
{
|
1762 |
+
"epoch": 0.46,
|
1763 |
+
"grad_norm": 0.15240634543877116,
|
1764 |
+
"learning_rate": 0.00019834282991745464,
|
1765 |
+
"loss": 1.1995,
|
1766 |
+
"step": 251
|
1767 |
+
},
|
1768 |
+
{
|
1769 |
+
"epoch": 0.46,
|
1770 |
+
"grad_norm": 0.151807679821367,
|
1771 |
+
"learning_rate": 0.00019830417694279766,
|
1772 |
+
"loss": 1.25,
|
1773 |
+
"step": 252
|
1774 |
+
},
|
1775 |
+
{
|
1776 |
+
"epoch": 0.46,
|
1777 |
+
"grad_norm": 0.1648599156208311,
|
1778 |
+
"learning_rate": 0.0001982650822195762,
|
1779 |
+
"loss": 1.2511,
|
1780 |
+
"step": 253
|
1781 |
+
},
|
1782 |
+
{
|
1783 |
+
"epoch": 0.46,
|
1784 |
+
"grad_norm": 0.15363401233808713,
|
1785 |
+
"learning_rate": 0.00019822554592346993,
|
1786 |
+
"loss": 1.1794,
|
1787 |
+
"step": 254
|
1788 |
+
},
|
1789 |
+
{
|
1790 |
+
"epoch": 0.46,
|
1791 |
+
"grad_norm": 0.1569644350778875,
|
1792 |
+
"learning_rate": 0.00019818556823214268,
|
1793 |
+
"loss": 1.2033,
|
1794 |
+
"step": 255
|
1795 |
+
},
|
1796 |
+
{
|
1797 |
+
"epoch": 0.47,
|
1798 |
+
"grad_norm": 0.15996552747294254,
|
1799 |
+
"learning_rate": 0.0001981451493252418,
|
1800 |
+
"loss": 1.2809,
|
1801 |
+
"step": 256
|
1802 |
+
},
|
1803 |
+
{
|
1804 |
+
"epoch": 0.47,
|
1805 |
+
"grad_norm": 0.15863104885072635,
|
1806 |
+
"learning_rate": 0.0001981042893843974,
|
1807 |
+
"loss": 1.1667,
|
1808 |
+
"step": 257
|
1809 |
+
},
|
1810 |
+
{
|
1811 |
+
"epoch": 0.47,
|
1812 |
+
"grad_norm": 0.2887466971861171,
|
1813 |
+
"learning_rate": 0.0001980629885932214,
|
1814 |
+
"loss": 1.1915,
|
1815 |
+
"step": 258
|
1816 |
+
},
|
1817 |
+
{
|
1818 |
+
"epoch": 0.47,
|
1819 |
+
"grad_norm": 0.15233015979193984,
|
1820 |
+
"learning_rate": 0.00019802124713730681,
|
1821 |
+
"loss": 1.1734,
|
1822 |
+
"step": 259
|
1823 |
+
},
|
1824 |
+
{
|
1825 |
+
"epoch": 0.47,
|
1826 |
+
"grad_norm": 0.18207884538436447,
|
1827 |
+
"learning_rate": 0.00019797906520422677,
|
1828 |
+
"loss": 1.2575,
|
1829 |
+
"step": 260
|
1830 |
+
},
|
1831 |
+
{
|
1832 |
+
"epoch": 0.48,
|
1833 |
+
"grad_norm": 0.17323546756038308,
|
1834 |
+
"learning_rate": 0.0001979364429835339,
|
1835 |
+
"loss": 1.1704,
|
1836 |
+
"step": 261
|
1837 |
+
},
|
1838 |
+
{
|
1839 |
+
"epoch": 0.48,
|
1840 |
+
"grad_norm": 0.14592153602263633,
|
1841 |
+
"learning_rate": 0.00019789338066675922,
|
1842 |
+
"loss": 1.192,
|
1843 |
+
"step": 262
|
1844 |
+
},
|
1845 |
+
{
|
1846 |
+
"epoch": 0.48,
|
1847 |
+
"grad_norm": 0.19250697792287097,
|
1848 |
+
"learning_rate": 0.0001978498784474115,
|
1849 |
+
"loss": 1.2779,
|
1850 |
+
"step": 263
|
1851 |
+
},
|
1852 |
+
{
|
1853 |
+
"epoch": 0.48,
|
1854 |
+
"grad_norm": 0.1429107680887097,
|
1855 |
+
"learning_rate": 0.0001978059365209762,
|
1856 |
+
"loss": 1.2529,
|
1857 |
+
"step": 264
|
1858 |
+
},
|
1859 |
+
{
|
1860 |
+
"epoch": 0.48,
|
1861 |
+
"grad_norm": 0.48514081074992116,
|
1862 |
+
"learning_rate": 0.00019776155508491482,
|
1863 |
+
"loss": 1.1917,
|
1864 |
+
"step": 265
|
1865 |
+
},
|
1866 |
+
{
|
1867 |
+
"epoch": 0.48,
|
1868 |
+
"grad_norm": 0.1534376167748161,
|
1869 |
+
"learning_rate": 0.0001977167343386638,
|
1870 |
+
"loss": 1.2384,
|
1871 |
+
"step": 266
|
1872 |
+
},
|
1873 |
+
{
|
1874 |
+
"epoch": 0.49,
|
1875 |
+
"grad_norm": 0.16744875760032166,
|
1876 |
+
"learning_rate": 0.00019767147448363366,
|
1877 |
+
"loss": 1.1744,
|
1878 |
+
"step": 267
|
1879 |
+
},
|
1880 |
+
{
|
1881 |
+
"epoch": 0.49,
|
1882 |
+
"grad_norm": 0.29195538170738244,
|
1883 |
+
"learning_rate": 0.00019762577572320824,
|
1884 |
+
"loss": 1.1418,
|
1885 |
+
"step": 268
|
1886 |
+
},
|
1887 |
+
{
|
1888 |
+
"epoch": 0.49,
|
1889 |
+
"grad_norm": 0.1820804717651353,
|
1890 |
+
"learning_rate": 0.00019757963826274357,
|
1891 |
+
"loss": 1.2815,
|
1892 |
+
"step": 269
|
1893 |
+
},
|
1894 |
+
{
|
1895 |
+
"epoch": 0.49,
|
1896 |
+
"grad_norm": 0.17522345110441973,
|
1897 |
+
"learning_rate": 0.00019753306230956718,
|
1898 |
+
"loss": 1.2363,
|
1899 |
+
"step": 270
|
1900 |
+
},
|
1901 |
+
{
|
1902 |
+
"epoch": 0.49,
|
1903 |
+
"grad_norm": 0.16354388270886613,
|
1904 |
+
"learning_rate": 0.000197486048072977,
|
1905 |
+
"loss": 1.2845,
|
1906 |
+
"step": 271
|
1907 |
+
},
|
1908 |
+
{
|
1909 |
+
"epoch": 0.5,
|
1910 |
+
"grad_norm": 0.17590082756401024,
|
1911 |
+
"learning_rate": 0.0001974385957642404,
|
1912 |
+
"loss": 1.192,
|
1913 |
+
"step": 272
|
1914 |
+
},
|
1915 |
+
{
|
1916 |
+
"epoch": 0.5,
|
1917 |
+
"grad_norm": 0.17345720403188775,
|
1918 |
+
"learning_rate": 0.00019739070559659347,
|
1919 |
+
"loss": 1.2068,
|
1920 |
+
"step": 273
|
1921 |
+
},
|
1922 |
+
{
|
1923 |
+
"epoch": 0.5,
|
1924 |
+
"grad_norm": 0.16070434867766506,
|
1925 |
+
"learning_rate": 0.00019734237778523976,
|
1926 |
+
"loss": 1.189,
|
1927 |
+
"step": 274
|
1928 |
+
},
|
1929 |
+
{
|
1930 |
+
"epoch": 0.5,
|
1931 |
+
"grad_norm": 0.18983443066710415,
|
1932 |
+
"learning_rate": 0.0001972936125473495,
|
1933 |
+
"loss": 1.2223,
|
1934 |
+
"step": 275
|
1935 |
+
},
|
1936 |
+
{
|
1937 |
+
"epoch": 0.5,
|
1938 |
+
"grad_norm": 0.15724400187981355,
|
1939 |
+
"learning_rate": 0.00019724441010205863,
|
1940 |
+
"loss": 1.2292,
|
1941 |
+
"step": 276
|
1942 |
+
},
|
1943 |
+
{
|
1944 |
+
"epoch": 0.5,
|
1945 |
+
"grad_norm": 0.14570729442956004,
|
1946 |
+
"learning_rate": 0.00019719477067046766,
|
1947 |
+
"loss": 1.1421,
|
1948 |
+
"step": 277
|
1949 |
+
},
|
1950 |
+
{
|
1951 |
+
"epoch": 0.51,
|
1952 |
+
"grad_norm": 0.1559242881177266,
|
1953 |
+
"learning_rate": 0.00019714469447564088,
|
1954 |
+
"loss": 1.2598,
|
1955 |
+
"step": 278
|
1956 |
+
},
|
1957 |
+
{
|
1958 |
+
"epoch": 0.51,
|
1959 |
+
"grad_norm": 0.16621830243096108,
|
1960 |
+
"learning_rate": 0.0001970941817426052,
|
1961 |
+
"loss": 1.3038,
|
1962 |
+
"step": 279
|
1963 |
+
},
|
1964 |
+
{
|
1965 |
+
"epoch": 0.51,
|
1966 |
+
"grad_norm": 4.675483994100576,
|
1967 |
+
"learning_rate": 0.00019704323269834927,
|
1968 |
+
"loss": 1.2298,
|
1969 |
+
"step": 280
|
1970 |
+
},
|
1971 |
+
{
|
1972 |
+
"epoch": 0.51,
|
1973 |
+
"grad_norm": 0.2769699381619058,
|
1974 |
+
"learning_rate": 0.00019699184757182225,
|
1975 |
+
"loss": 1.2566,
|
1976 |
+
"step": 281
|
1977 |
+
},
|
1978 |
+
{
|
1979 |
+
"epoch": 0.51,
|
1980 |
+
"grad_norm": 0.20189839889100783,
|
1981 |
+
"learning_rate": 0.00019694002659393305,
|
1982 |
+
"loss": 1.3181,
|
1983 |
+
"step": 282
|
1984 |
+
},
|
1985 |
+
{
|
1986 |
+
"epoch": 0.52,
|
1987 |
+
"grad_norm": 0.19497107359413876,
|
1988 |
+
"learning_rate": 0.00019688776999754912,
|
1989 |
+
"loss": 1.1502,
|
1990 |
+
"step": 283
|
1991 |
+
},
|
1992 |
+
{
|
1993 |
+
"epoch": 0.52,
|
1994 |
+
"grad_norm": 0.1982266815755412,
|
1995 |
+
"learning_rate": 0.00019683507801749545,
|
1996 |
+
"loss": 1.2053,
|
1997 |
+
"step": 284
|
1998 |
+
},
|
1999 |
+
{
|
2000 |
+
"epoch": 0.52,
|
2001 |
+
"grad_norm": 0.1924340950322314,
|
2002 |
+
"learning_rate": 0.00019678195089055346,
|
2003 |
+
"loss": 1.2149,
|
2004 |
+
"step": 285
|
2005 |
+
},
|
2006 |
+
{
|
2007 |
+
"epoch": 0.52,
|
2008 |
+
"grad_norm": 0.1725322346446431,
|
2009 |
+
"learning_rate": 0.00019672838885546008,
|
2010 |
+
"loss": 1.2553,
|
2011 |
+
"step": 286
|
2012 |
+
},
|
2013 |
+
{
|
2014 |
+
"epoch": 0.52,
|
2015 |
+
"grad_norm": 0.2535488743520272,
|
2016 |
+
"learning_rate": 0.00019667439215290648,
|
2017 |
+
"loss": 1.2576,
|
2018 |
+
"step": 287
|
2019 |
+
},
|
2020 |
+
{
|
2021 |
+
"epoch": 0.52,
|
2022 |
+
"grad_norm": 0.37837586860064026,
|
2023 |
+
"learning_rate": 0.00019661996102553718,
|
2024 |
+
"loss": 1.1815,
|
2025 |
+
"step": 288
|
2026 |
+
},
|
2027 |
+
{
|
2028 |
+
"epoch": 0.53,
|
2029 |
+
"grad_norm": 0.17520419597901843,
|
2030 |
+
"learning_rate": 0.00019656509571794878,
|
2031 |
+
"loss": 1.1932,
|
2032 |
+
"step": 289
|
2033 |
+
},
|
2034 |
+
{
|
2035 |
+
"epoch": 0.53,
|
2036 |
+
"grad_norm": 0.17056234784450633,
|
2037 |
+
"learning_rate": 0.00019650979647668906,
|
2038 |
+
"loss": 1.163,
|
2039 |
+
"step": 290
|
2040 |
+
},
|
2041 |
+
{
|
2042 |
+
"epoch": 0.53,
|
2043 |
+
"grad_norm": 0.18272246580207432,
|
2044 |
+
"learning_rate": 0.00019645406355025565,
|
2045 |
+
"loss": 1.1887,
|
2046 |
+
"step": 291
|
2047 |
+
},
|
2048 |
+
{
|
2049 |
+
"epoch": 0.53,
|
2050 |
+
"grad_norm": 0.17889037954429915,
|
2051 |
+
"learning_rate": 0.00019639789718909508,
|
2052 |
+
"loss": 1.2126,
|
2053 |
+
"step": 292
|
2054 |
+
},
|
2055 |
+
{
|
2056 |
+
"epoch": 0.53,
|
2057 |
+
"grad_norm": 0.23993734971101424,
|
2058 |
+
"learning_rate": 0.00019634129764560168,
|
2059 |
+
"loss": 1.2485,
|
2060 |
+
"step": 293
|
2061 |
+
},
|
2062 |
+
{
|
2063 |
+
"epoch": 0.54,
|
2064 |
+
"grad_norm": 0.1847578318208199,
|
2065 |
+
"learning_rate": 0.00019628426517411625,
|
2066 |
+
"loss": 1.2549,
|
2067 |
+
"step": 294
|
2068 |
+
},
|
2069 |
+
{
|
2070 |
+
"epoch": 0.54,
|
2071 |
+
"grad_norm": 0.23185098827091005,
|
2072 |
+
"learning_rate": 0.00019622680003092503,
|
2073 |
+
"loss": 1.1599,
|
2074 |
+
"step": 295
|
2075 |
+
},
|
2076 |
+
{
|
2077 |
+
"epoch": 0.54,
|
2078 |
+
"grad_norm": 0.220638044092583,
|
2079 |
+
"learning_rate": 0.00019616890247425866,
|
2080 |
+
"loss": 1.2281,
|
2081 |
+
"step": 296
|
2082 |
+
},
|
2083 |
+
{
|
2084 |
+
"epoch": 0.54,
|
2085 |
+
"grad_norm": 0.2303439219825616,
|
2086 |
+
"learning_rate": 0.00019611057276429085,
|
2087 |
+
"loss": 1.2208,
|
2088 |
+
"step": 297
|
2089 |
+
},
|
2090 |
+
{
|
2091 |
+
"epoch": 0.54,
|
2092 |
+
"grad_norm": 0.1744807302230573,
|
2093 |
+
"learning_rate": 0.00019605181116313724,
|
2094 |
+
"loss": 1.2303,
|
2095 |
+
"step": 298
|
2096 |
+
},
|
2097 |
+
{
|
2098 |
+
"epoch": 0.54,
|
2099 |
+
"grad_norm": 0.17510946821872422,
|
2100 |
+
"learning_rate": 0.0001959926179348543,
|
2101 |
+
"loss": 1.2385,
|
2102 |
+
"step": 299
|
2103 |
+
},
|
2104 |
+
{
|
2105 |
+
"epoch": 0.55,
|
2106 |
+
"grad_norm": 0.2218474349751746,
|
2107 |
+
"learning_rate": 0.00019593299334543808,
|
2108 |
+
"loss": 1.2153,
|
2109 |
+
"step": 300
|
2110 |
+
},
|
2111 |
+
{
|
2112 |
+
"epoch": 0.55,
|
2113 |
+
"grad_norm": 0.1742070481516402,
|
2114 |
+
"learning_rate": 0.00019587293766282308,
|
2115 |
+
"loss": 1.1628,
|
2116 |
+
"step": 301
|
2117 |
+
},
|
2118 |
+
{
|
2119 |
+
"epoch": 0.55,
|
2120 |
+
"grad_norm": 0.15250311715180823,
|
2121 |
+
"learning_rate": 0.00019581245115688094,
|
2122 |
+
"loss": 1.1632,
|
2123 |
+
"step": 302
|
2124 |
+
},
|
2125 |
+
{
|
2126 |
+
"epoch": 0.55,
|
2127 |
+
"grad_norm": 0.1744397677094501,
|
2128 |
+
"learning_rate": 0.0001957515340994193,
|
2129 |
+
"loss": 1.254,
|
2130 |
+
"step": 303
|
2131 |
+
},
|
2132 |
+
{
|
2133 |
+
"epoch": 0.55,
|
2134 |
+
"grad_norm": 0.1686772182789891,
|
2135 |
+
"learning_rate": 0.00019569018676418053,
|
2136 |
+
"loss": 1.2169,
|
2137 |
+
"step": 304
|
2138 |
+
},
|
2139 |
+
{
|
2140 |
+
"epoch": 0.56,
|
2141 |
+
"grad_norm": 0.16404966161017623,
|
2142 |
+
"learning_rate": 0.00019562840942684067,
|
2143 |
+
"loss": 1.2221,
|
2144 |
+
"step": 305
|
2145 |
+
},
|
2146 |
+
{
|
2147 |
+
"epoch": 0.56,
|
2148 |
+
"grad_norm": 0.16052011449463713,
|
2149 |
+
"learning_rate": 0.00019556620236500793,
|
2150 |
+
"loss": 1.2045,
|
2151 |
+
"step": 306
|
2152 |
+
},
|
2153 |
+
{
|
2154 |
+
"epoch": 0.56,
|
2155 |
+
"grad_norm": 0.16343251390831215,
|
2156 |
+
"learning_rate": 0.0001955035658582216,
|
2157 |
+
"loss": 1.2289,
|
2158 |
+
"step": 307
|
2159 |
+
},
|
2160 |
+
{
|
2161 |
+
"epoch": 0.56,
|
2162 |
+
"grad_norm": 0.14387162360389305,
|
2163 |
+
"learning_rate": 0.00019544050018795075,
|
2164 |
+
"loss": 1.1365,
|
2165 |
+
"step": 308
|
2166 |
+
},
|
2167 |
+
{
|
2168 |
+
"epoch": 0.56,
|
2169 |
+
"grad_norm": 0.15304461439740238,
|
2170 |
+
"learning_rate": 0.00019537700563759304,
|
2171 |
+
"loss": 1.1931,
|
2172 |
+
"step": 309
|
2173 |
+
},
|
2174 |
+
{
|
2175 |
+
"epoch": 0.56,
|
2176 |
+
"grad_norm": 0.17059958050065627,
|
2177 |
+
"learning_rate": 0.00019531308249247327,
|
2178 |
+
"loss": 1.2166,
|
2179 |
+
"step": 310
|
2180 |
+
},
|
2181 |
+
{
|
2182 |
+
"epoch": 0.57,
|
2183 |
+
"grad_norm": 0.17633385530926995,
|
2184 |
+
"learning_rate": 0.00019524873103984235,
|
2185 |
+
"loss": 1.2604,
|
2186 |
+
"step": 311
|
2187 |
+
},
|
2188 |
+
{
|
2189 |
+
"epoch": 0.57,
|
2190 |
+
"grad_norm": 0.17855814403303746,
|
2191 |
+
"learning_rate": 0.00019518395156887576,
|
2192 |
+
"loss": 1.1615,
|
2193 |
+
"step": 312
|
2194 |
+
},
|
2195 |
+
{
|
2196 |
+
"epoch": 0.57,
|
2197 |
+
"grad_norm": 0.19823982444256988,
|
2198 |
+
"learning_rate": 0.00019511874437067243,
|
2199 |
+
"loss": 1.2153,
|
2200 |
+
"step": 313
|
2201 |
+
},
|
2202 |
+
{
|
2203 |
+
"epoch": 0.57,
|
2204 |
+
"grad_norm": 0.1570784627362585,
|
2205 |
+
"learning_rate": 0.0001950531097382533,
|
2206 |
+
"loss": 1.2788,
|
2207 |
+
"step": 314
|
2208 |
+
},
|
2209 |
+
{
|
2210 |
+
"epoch": 0.57,
|
2211 |
+
"grad_norm": 0.2183125402112695,
|
2212 |
+
"learning_rate": 0.00019498704796656018,
|
2213 |
+
"loss": 1.2966,
|
2214 |
+
"step": 315
|
2215 |
+
},
|
2216 |
+
{
|
2217 |
+
"epoch": 0.58,
|
2218 |
+
"grad_norm": 0.18173933276147194,
|
2219 |
+
"learning_rate": 0.00019492055935245418,
|
2220 |
+
"loss": 1.2978,
|
2221 |
+
"step": 316
|
2222 |
+
},
|
2223 |
+
{
|
2224 |
+
"epoch": 0.58,
|
2225 |
+
"grad_norm": 0.17483116680914407,
|
2226 |
+
"learning_rate": 0.00019485364419471454,
|
2227 |
+
"loss": 1.258,
|
2228 |
+
"step": 317
|
2229 |
+
},
|
2230 |
+
{
|
2231 |
+
"epoch": 0.58,
|
2232 |
+
"grad_norm": 0.15490767356815494,
|
2233 |
+
"learning_rate": 0.0001947863027940374,
|
2234 |
+
"loss": 1.2088,
|
2235 |
+
"step": 318
|
2236 |
+
},
|
2237 |
+
{
|
2238 |
+
"epoch": 0.58,
|
2239 |
+
"grad_norm": 0.14703966491934156,
|
2240 |
+
"learning_rate": 0.00019471853545303405,
|
2241 |
+
"loss": 1.2355,
|
2242 |
+
"step": 319
|
2243 |
+
},
|
2244 |
+
{
|
2245 |
+
"epoch": 0.58,
|
2246 |
+
"grad_norm": 0.14386689086661608,
|
2247 |
+
"learning_rate": 0.00019465034247623003,
|
2248 |
+
"loss": 1.2583,
|
2249 |
+
"step": 320
|
2250 |
+
},
|
2251 |
+
{
|
2252 |
+
"epoch": 0.58,
|
2253 |
+
"grad_norm": 0.18818904376313625,
|
2254 |
+
"learning_rate": 0.00019458172417006347,
|
2255 |
+
"loss": 1.2181,
|
2256 |
+
"step": 321
|
2257 |
+
},
|
2258 |
+
{
|
2259 |
+
"epoch": 0.59,
|
2260 |
+
"grad_norm": 0.17393313719202513,
|
2261 |
+
"learning_rate": 0.00019451268084288385,
|
2262 |
+
"loss": 1.3453,
|
2263 |
+
"step": 322
|
2264 |
+
},
|
2265 |
+
{
|
2266 |
+
"epoch": 0.59,
|
2267 |
+
"grad_norm": 0.14706823379985753,
|
2268 |
+
"learning_rate": 0.00019444321280495043,
|
2269 |
+
"loss": 1.2234,
|
2270 |
+
"step": 323
|
2271 |
+
},
|
2272 |
+
{
|
2273 |
+
"epoch": 0.59,
|
2274 |
+
"grad_norm": 0.15282014755252687,
|
2275 |
+
"learning_rate": 0.00019437332036843118,
|
2276 |
+
"loss": 1.1262,
|
2277 |
+
"step": 324
|
2278 |
+
},
|
2279 |
+
{
|
2280 |
+
"epoch": 0.59,
|
2281 |
+
"grad_norm": 0.1618727884326225,
|
2282 |
+
"learning_rate": 0.00019430300384740105,
|
2283 |
+
"loss": 1.3136,
|
2284 |
+
"step": 325
|
2285 |
+
},
|
2286 |
+
{
|
2287 |
+
"epoch": 0.59,
|
2288 |
+
"grad_norm": 0.16090758705378874,
|
2289 |
+
"learning_rate": 0.00019423226355784077,
|
2290 |
+
"loss": 1.2055,
|
2291 |
+
"step": 326
|
2292 |
+
},
|
2293 |
+
{
|
2294 |
+
"epoch": 0.6,
|
2295 |
+
"grad_norm": 0.15241156801091013,
|
2296 |
+
"learning_rate": 0.00019416109981763526,
|
2297 |
+
"loss": 1.2678,
|
2298 |
+
"step": 327
|
2299 |
+
},
|
2300 |
+
{
|
2301 |
+
"epoch": 0.6,
|
2302 |
+
"grad_norm": 0.14216697909809062,
|
2303 |
+
"learning_rate": 0.0001940895129465724,
|
2304 |
+
"loss": 1.2841,
|
2305 |
+
"step": 328
|
2306 |
+
},
|
2307 |
+
{
|
2308 |
+
"epoch": 0.6,
|
2309 |
+
"grad_norm": 0.15790232415414485,
|
2310 |
+
"learning_rate": 0.00019401750326634144,
|
2311 |
+
"loss": 1.3119,
|
2312 |
+
"step": 329
|
2313 |
+
},
|
2314 |
+
{
|
2315 |
+
"epoch": 0.6,
|
2316 |
+
"grad_norm": 0.13322691961062616,
|
2317 |
+
"learning_rate": 0.0001939450711005316,
|
2318 |
+
"loss": 1.1293,
|
2319 |
+
"step": 330
|
2320 |
+
},
|
2321 |
+
{
|
2322 |
+
"epoch": 0.6,
|
2323 |
+
"grad_norm": 0.14075018938835404,
|
2324 |
+
"learning_rate": 0.00019387221677463062,
|
2325 |
+
"loss": 1.2176,
|
2326 |
+
"step": 331
|
2327 |
+
},
|
2328 |
+
{
|
2329 |
+
"epoch": 0.6,
|
2330 |
+
"grad_norm": 0.21565975459393052,
|
2331 |
+
"learning_rate": 0.00019379894061602335,
|
2332 |
+
"loss": 1.1723,
|
2333 |
+
"step": 332
|
2334 |
+
},
|
2335 |
+
{
|
2336 |
+
"epoch": 0.61,
|
2337 |
+
"grad_norm": 0.17967631394222838,
|
2338 |
+
"learning_rate": 0.00019372524295399013,
|
2339 |
+
"loss": 1.239,
|
2340 |
+
"step": 333
|
2341 |
+
},
|
2342 |
+
{
|
2343 |
+
"epoch": 0.61,
|
2344 |
+
"grad_norm": 0.21187969201978435,
|
2345 |
+
"learning_rate": 0.0001936511241197055,
|
2346 |
+
"loss": 1.2207,
|
2347 |
+
"step": 334
|
2348 |
+
},
|
2349 |
+
{
|
2350 |
+
"epoch": 0.61,
|
2351 |
+
"grad_norm": 0.16967789022974608,
|
2352 |
+
"learning_rate": 0.00019357658444623654,
|
2353 |
+
"loss": 1.2478,
|
2354 |
+
"step": 335
|
2355 |
+
},
|
2356 |
+
{
|
2357 |
+
"epoch": 0.61,
|
2358 |
+
"grad_norm": 0.14810621660374448,
|
2359 |
+
"learning_rate": 0.0001935016242685415,
|
2360 |
+
"loss": 1.1223,
|
2361 |
+
"step": 336
|
2362 |
+
},
|
2363 |
+
{
|
2364 |
+
"epoch": 0.61,
|
2365 |
+
"grad_norm": 0.1489106421847434,
|
2366 |
+
"learning_rate": 0.00019342624392346824,
|
2367 |
+
"loss": 1.1592,
|
2368 |
+
"step": 337
|
2369 |
+
},
|
2370 |
+
{
|
2371 |
+
"epoch": 0.62,
|
2372 |
+
"grad_norm": 0.17625176068748855,
|
2373 |
+
"learning_rate": 0.0001933504437497527,
|
2374 |
+
"loss": 1.2145,
|
2375 |
+
"step": 338
|
2376 |
+
},
|
2377 |
+
{
|
2378 |
+
"epoch": 0.62,
|
2379 |
+
"grad_norm": 0.17250255512763446,
|
2380 |
+
"learning_rate": 0.00019327422408801744,
|
2381 |
+
"loss": 1.2504,
|
2382 |
+
"step": 339
|
2383 |
+
},
|
2384 |
+
{
|
2385 |
+
"epoch": 0.62,
|
2386 |
+
"grad_norm": 0.16079375745566896,
|
2387 |
+
"learning_rate": 0.00019319758528077,
|
2388 |
+
"loss": 1.1795,
|
2389 |
+
"step": 340
|
2390 |
+
},
|
2391 |
+
{
|
2392 |
+
"epoch": 0.62,
|
2393 |
+
"grad_norm": 0.15454466809245995,
|
2394 |
+
"learning_rate": 0.0001931205276724015,
|
2395 |
+
"loss": 1.2123,
|
2396 |
+
"step": 341
|
2397 |
+
},
|
2398 |
+
{
|
2399 |
+
"epoch": 0.62,
|
2400 |
+
"grad_norm": 0.7021323604447972,
|
2401 |
+
"learning_rate": 0.000193043051609185,
|
2402 |
+
"loss": 1.2239,
|
2403 |
+
"step": 342
|
2404 |
+
},
|
2405 |
+
{
|
2406 |
+
"epoch": 0.62,
|
2407 |
+
"grad_norm": 0.1572764339385847,
|
2408 |
+
"learning_rate": 0.00019296515743927399,
|
2409 |
+
"loss": 1.2516,
|
2410 |
+
"step": 343
|
2411 |
+
},
|
2412 |
+
{
|
2413 |
+
"epoch": 0.63,
|
2414 |
+
"grad_norm": 0.2136637778252246,
|
2415 |
+
"learning_rate": 0.00019288684551270073,
|
2416 |
+
"loss": 1.2321,
|
2417 |
+
"step": 344
|
2418 |
+
},
|
2419 |
+
{
|
2420 |
+
"epoch": 0.63,
|
2421 |
+
"grad_norm": 0.4546540454773654,
|
2422 |
+
"learning_rate": 0.00019280811618137484,
|
2423 |
+
"loss": 1.18,
|
2424 |
+
"step": 345
|
2425 |
+
},
|
2426 |
+
{
|
2427 |
+
"epoch": 0.63,
|
2428 |
+
"grad_norm": 0.9809832576786297,
|
2429 |
+
"learning_rate": 0.00019272896979908154,
|
2430 |
+
"loss": 1.2081,
|
2431 |
+
"step": 346
|
2432 |
+
},
|
2433 |
+
{
|
2434 |
+
"epoch": 0.63,
|
2435 |
+
"grad_norm": 0.5246256133291822,
|
2436 |
+
"learning_rate": 0.00019264940672148018,
|
2437 |
+
"loss": 1.2722,
|
2438 |
+
"step": 347
|
2439 |
+
},
|
2440 |
+
{
|
2441 |
+
"epoch": 0.63,
|
2442 |
+
"grad_norm": 0.24941717134878091,
|
2443 |
+
"learning_rate": 0.00019256942730610268,
|
2444 |
+
"loss": 1.2352,
|
2445 |
+
"step": 348
|
2446 |
+
},
|
2447 |
+
{
|
2448 |
+
"epoch": 0.64,
|
2449 |
+
"grad_norm": 0.3356068462072784,
|
2450 |
+
"learning_rate": 0.00019248903191235176,
|
2451 |
+
"loss": 1.2225,
|
2452 |
+
"step": 349
|
2453 |
+
},
|
2454 |
+
{
|
2455 |
+
"epoch": 0.64,
|
2456 |
+
"grad_norm": 0.19535845221880543,
|
2457 |
+
"learning_rate": 0.00019240822090149944,
|
2458 |
+
"loss": 1.1669,
|
2459 |
+
"step": 350
|
2460 |
+
},
|
2461 |
+
{
|
2462 |
+
"epoch": 0.64,
|
2463 |
+
"grad_norm": 0.22306941566416597,
|
2464 |
+
"learning_rate": 0.00019232699463668542,
|
2465 |
+
"loss": 1.2281,
|
2466 |
+
"step": 351
|
2467 |
+
},
|
2468 |
+
{
|
2469 |
+
"epoch": 0.64,
|
2470 |
+
"grad_norm": 0.2700134013989352,
|
2471 |
+
"learning_rate": 0.00019224535348291542,
|
2472 |
+
"loss": 1.1939,
|
2473 |
+
"step": 352
|
2474 |
+
},
|
2475 |
+
{
|
2476 |
+
"epoch": 0.64,
|
2477 |
+
"grad_norm": 0.24406908935562743,
|
2478 |
+
"learning_rate": 0.00019216329780705953,
|
2479 |
+
"loss": 1.1839,
|
2480 |
+
"step": 353
|
2481 |
+
},
|
2482 |
+
{
|
2483 |
+
"epoch": 0.64,
|
2484 |
+
"grad_norm": 0.20465183000217488,
|
2485 |
+
"learning_rate": 0.00019208082797785055,
|
2486 |
+
"loss": 1.2277,
|
2487 |
+
"step": 354
|
2488 |
+
},
|
2489 |
+
{
|
2490 |
+
"epoch": 0.65,
|
2491 |
+
"grad_norm": 0.21324820828129784,
|
2492 |
+
"learning_rate": 0.00019199794436588243,
|
2493 |
+
"loss": 1.2072,
|
2494 |
+
"step": 355
|
2495 |
+
},
|
2496 |
+
{
|
2497 |
+
"epoch": 0.65,
|
2498 |
+
"grad_norm": 0.1780562512431263,
|
2499 |
+
"learning_rate": 0.00019191464734360844,
|
2500 |
+
"loss": 1.2082,
|
2501 |
+
"step": 356
|
2502 |
+
},
|
2503 |
+
{
|
2504 |
+
"epoch": 0.65,
|
2505 |
+
"grad_norm": 0.16547971467615655,
|
2506 |
+
"learning_rate": 0.00019183093728533966,
|
2507 |
+
"loss": 1.1978,
|
2508 |
+
"step": 357
|
2509 |
+
},
|
2510 |
+
{
|
2511 |
+
"epoch": 0.65,
|
2512 |
+
"grad_norm": 0.22904664933247196,
|
2513 |
+
"learning_rate": 0.00019174681456724318,
|
2514 |
+
"loss": 1.1562,
|
2515 |
+
"step": 358
|
2516 |
+
},
|
2517 |
+
{
|
2518 |
+
"epoch": 0.65,
|
2519 |
+
"grad_norm": 0.1737397860007602,
|
2520 |
+
"learning_rate": 0.00019166227956734052,
|
2521 |
+
"loss": 1.2383,
|
2522 |
+
"step": 359
|
2523 |
+
},
|
2524 |
+
{
|
2525 |
+
"epoch": 0.66,
|
2526 |
+
"grad_norm": 0.1589465455917568,
|
2527 |
+
"learning_rate": 0.00019157733266550575,
|
2528 |
+
"loss": 1.2158,
|
2529 |
+
"step": 360
|
2530 |
+
},
|
2531 |
+
{
|
2532 |
+
"epoch": 0.66,
|
2533 |
+
"grad_norm": 0.16253126221999709,
|
2534 |
+
"learning_rate": 0.00019149197424346405,
|
2535 |
+
"loss": 1.1952,
|
2536 |
+
"step": 361
|
2537 |
+
},
|
2538 |
+
{
|
2539 |
+
"epoch": 0.66,
|
2540 |
+
"grad_norm": 0.22436676243032663,
|
2541 |
+
"learning_rate": 0.00019140620468478968,
|
2542 |
+
"loss": 1.2315,
|
2543 |
+
"step": 362
|
2544 |
+
},
|
2545 |
+
{
|
2546 |
+
"epoch": 0.66,
|
2547 |
+
"grad_norm": 0.19291682612950423,
|
2548 |
+
"learning_rate": 0.00019132002437490458,
|
2549 |
+
"loss": 1.2283,
|
2550 |
+
"step": 363
|
2551 |
+
},
|
2552 |
+
{
|
2553 |
+
"epoch": 0.66,
|
2554 |
+
"grad_norm": 0.1519191258459668,
|
2555 |
+
"learning_rate": 0.00019123343370107637,
|
2556 |
+
"loss": 1.1151,
|
2557 |
+
"step": 364
|
2558 |
+
},
|
2559 |
+
{
|
2560 |
+
"epoch": 0.66,
|
2561 |
+
"grad_norm": 0.17179909633547025,
|
2562 |
+
"learning_rate": 0.00019114643305241676,
|
2563 |
+
"loss": 1.1576,
|
2564 |
+
"step": 365
|
2565 |
+
},
|
2566 |
+
{
|
2567 |
+
"epoch": 0.67,
|
2568 |
+
"grad_norm": 0.17992599023321432,
|
2569 |
+
"learning_rate": 0.00019105902281987976,
|
2570 |
+
"loss": 1.2592,
|
2571 |
+
"step": 366
|
2572 |
+
},
|
2573 |
+
{
|
2574 |
+
"epoch": 0.67,
|
2575 |
+
"grad_norm": 0.17714099390314453,
|
2576 |
+
"learning_rate": 0.00019097120339625994,
|
2577 |
+
"loss": 1.2578,
|
2578 |
+
"step": 367
|
2579 |
+
},
|
2580 |
+
{
|
2581 |
+
"epoch": 0.67,
|
2582 |
+
"grad_norm": 0.2455577642687935,
|
2583 |
+
"learning_rate": 0.00019088297517619055,
|
2584 |
+
"loss": 1.2361,
|
2585 |
+
"step": 368
|
2586 |
+
},
|
2587 |
+
{
|
2588 |
+
"epoch": 0.67,
|
2589 |
+
"grad_norm": 0.18398518628783986,
|
2590 |
+
"learning_rate": 0.00019079433855614201,
|
2591 |
+
"loss": 1.1906,
|
2592 |
+
"step": 369
|
2593 |
+
},
|
2594 |
+
{
|
2595 |
+
"epoch": 0.67,
|
2596 |
+
"grad_norm": 0.18944067022821645,
|
2597 |
+
"learning_rate": 0.00019070529393441985,
|
2598 |
+
"loss": 1.237,
|
2599 |
+
"step": 370
|
2600 |
+
},
|
2601 |
+
{
|
2602 |
+
"epoch": 0.68,
|
2603 |
+
"grad_norm": 0.17639967519781063,
|
2604 |
+
"learning_rate": 0.00019061584171116303,
|
2605 |
+
"loss": 1.1841,
|
2606 |
+
"step": 371
|
2607 |
+
},
|
2608 |
+
{
|
2609 |
+
"epoch": 0.68,
|
2610 |
+
"grad_norm": 0.15947129998283005,
|
2611 |
+
"learning_rate": 0.00019052598228834217,
|
2612 |
+
"loss": 1.1722,
|
2613 |
+
"step": 372
|
2614 |
+
},
|
2615 |
+
{
|
2616 |
+
"epoch": 0.68,
|
2617 |
+
"grad_norm": 0.1693354353719105,
|
2618 |
+
"learning_rate": 0.00019043571606975777,
|
2619 |
+
"loss": 1.2204,
|
2620 |
+
"step": 373
|
2621 |
+
},
|
2622 |
+
{
|
2623 |
+
"epoch": 0.68,
|
2624 |
+
"grad_norm": 0.16236190451963983,
|
2625 |
+
"learning_rate": 0.00019034504346103823,
|
2626 |
+
"loss": 1.1778,
|
2627 |
+
"step": 374
|
2628 |
+
},
|
2629 |
+
{
|
2630 |
+
"epoch": 0.68,
|
2631 |
+
"grad_norm": 0.17702370729269964,
|
2632 |
+
"learning_rate": 0.00019025396486963827,
|
2633 |
+
"loss": 1.2065,
|
2634 |
+
"step": 375
|
2635 |
+
},
|
2636 |
+
{
|
2637 |
+
"epoch": 0.68,
|
2638 |
+
"grad_norm": 0.19388150596154238,
|
2639 |
+
"learning_rate": 0.00019016248070483687,
|
2640 |
+
"loss": 1.2942,
|
2641 |
+
"step": 376
|
2642 |
+
},
|
2643 |
+
{
|
2644 |
+
"epoch": 0.69,
|
2645 |
+
"grad_norm": 0.16152000400319103,
|
2646 |
+
"learning_rate": 0.0001900705913777356,
|
2647 |
+
"loss": 1.1784,
|
2648 |
+
"step": 377
|
2649 |
+
},
|
2650 |
+
{
|
2651 |
+
"epoch": 0.69,
|
2652 |
+
"grad_norm": 0.1545267913996029,
|
2653 |
+
"learning_rate": 0.00018997829730125663,
|
2654 |
+
"loss": 1.1829,
|
2655 |
+
"step": 378
|
2656 |
+
},
|
2657 |
+
{
|
2658 |
+
"epoch": 0.69,
|
2659 |
+
"grad_norm": 0.15421727704318197,
|
2660 |
+
"learning_rate": 0.000189885598890141,
|
2661 |
+
"loss": 1.177,
|
2662 |
+
"step": 379
|
2663 |
+
},
|
2664 |
+
{
|
2665 |
+
"epoch": 0.69,
|
2666 |
+
"grad_norm": 0.1624966073814206,
|
2667 |
+
"learning_rate": 0.00018979249656094673,
|
2668 |
+
"loss": 1.2439,
|
2669 |
+
"step": 380
|
2670 |
+
},
|
2671 |
+
{
|
2672 |
+
"epoch": 0.69,
|
2673 |
+
"grad_norm": 0.9490737312904575,
|
2674 |
+
"learning_rate": 0.00018969899073204686,
|
2675 |
+
"loss": 1.2085,
|
2676 |
+
"step": 381
|
2677 |
+
},
|
2678 |
+
{
|
2679 |
+
"epoch": 0.7,
|
2680 |
+
"grad_norm": 0.8982903208613089,
|
2681 |
+
"learning_rate": 0.00018960508182362768,
|
2682 |
+
"loss": 1.2347,
|
2683 |
+
"step": 382
|
2684 |
+
},
|
2685 |
+
{
|
2686 |
+
"epoch": 0.7,
|
2687 |
+
"grad_norm": 0.3771428474797688,
|
2688 |
+
"learning_rate": 0.00018951077025768678,
|
2689 |
+
"loss": 1.2546,
|
2690 |
+
"step": 383
|
2691 |
+
},
|
2692 |
+
{
|
2693 |
+
"epoch": 0.7,
|
2694 |
+
"grad_norm": 0.4776152950069111,
|
2695 |
+
"learning_rate": 0.00018941605645803115,
|
2696 |
+
"loss": 1.2904,
|
2697 |
+
"step": 384
|
2698 |
+
},
|
2699 |
+
{
|
2700 |
+
"epoch": 0.7,
|
2701 |
+
"grad_norm": 0.18786943849618057,
|
2702 |
+
"learning_rate": 0.00018932094085027533,
|
2703 |
+
"loss": 1.2122,
|
2704 |
+
"step": 385
|
2705 |
+
},
|
2706 |
+
{
|
2707 |
+
"epoch": 0.7,
|
2708 |
+
"grad_norm": 1.6297025984167128,
|
2709 |
+
"learning_rate": 0.0001892254238618394,
|
2710 |
+
"loss": 1.171,
|
2711 |
+
"step": 386
|
2712 |
+
},
|
2713 |
+
{
|
2714 |
+
"epoch": 0.7,
|
2715 |
+
"grad_norm": 0.20382660707264952,
|
2716 |
+
"learning_rate": 0.0001891295059219472,
|
2717 |
+
"loss": 1.1874,
|
2718 |
+
"step": 387
|
2719 |
+
},
|
2720 |
+
{
|
2721 |
+
"epoch": 0.71,
|
2722 |
+
"grad_norm": 1.3580819775908755,
|
2723 |
+
"learning_rate": 0.00018903318746162429,
|
2724 |
+
"loss": 1.1531,
|
2725 |
+
"step": 388
|
2726 |
+
},
|
2727 |
+
{
|
2728 |
+
"epoch": 0.71,
|
2729 |
+
"grad_norm": 0.43619056173016185,
|
2730 |
+
"learning_rate": 0.00018893646891369602,
|
2731 |
+
"loss": 1.2289,
|
2732 |
+
"step": 389
|
2733 |
+
},
|
2734 |
+
{
|
2735 |
+
"epoch": 0.71,
|
2736 |
+
"grad_norm": 0.29385240705823723,
|
2737 |
+
"learning_rate": 0.0001888393507127856,
|
2738 |
+
"loss": 1.2073,
|
2739 |
+
"step": 390
|
2740 |
+
},
|
2741 |
+
{
|
2742 |
+
"epoch": 0.71,
|
2743 |
+
"grad_norm": 0.3136086850525623,
|
2744 |
+
"learning_rate": 0.00018874183329531223,
|
2745 |
+
"loss": 1.1898,
|
2746 |
+
"step": 391
|
2747 |
+
},
|
2748 |
+
{
|
2749 |
+
"epoch": 0.71,
|
2750 |
+
"grad_norm": 0.2307767217662562,
|
2751 |
+
"learning_rate": 0.000188643917099489,
|
2752 |
+
"loss": 1.207,
|
2753 |
+
"step": 392
|
2754 |
+
},
|
2755 |
+
{
|
2756 |
+
"epoch": 0.72,
|
2757 |
+
"grad_norm": 0.18703654518135468,
|
2758 |
+
"learning_rate": 0.000188545602565321,
|
2759 |
+
"loss": 1.1688,
|
2760 |
+
"step": 393
|
2761 |
+
},
|
2762 |
+
{
|
2763 |
+
"epoch": 0.72,
|
2764 |
+
"grad_norm": 0.4809351333934126,
|
2765 |
+
"learning_rate": 0.00018844689013460336,
|
2766 |
+
"loss": 1.2519,
|
2767 |
+
"step": 394
|
2768 |
+
},
|
2769 |
+
{
|
2770 |
+
"epoch": 0.72,
|
2771 |
+
"grad_norm": 0.40370101428544464,
|
2772 |
+
"learning_rate": 0.0001883477802509192,
|
2773 |
+
"loss": 1.2411,
|
2774 |
+
"step": 395
|
2775 |
+
},
|
2776 |
+
{
|
2777 |
+
"epoch": 0.72,
|
2778 |
+
"grad_norm": 0.2858848636432859,
|
2779 |
+
"learning_rate": 0.00018824827335963765,
|
2780 |
+
"loss": 1.194,
|
2781 |
+
"step": 396
|
2782 |
+
},
|
2783 |
+
{
|
2784 |
+
"epoch": 0.72,
|
2785 |
+
"grad_norm": 0.32195602638999565,
|
2786 |
+
"learning_rate": 0.000188148369907912,
|
2787 |
+
"loss": 1.0988,
|
2788 |
+
"step": 397
|
2789 |
+
},
|
2790 |
+
{
|
2791 |
+
"epoch": 0.72,
|
2792 |
+
"grad_norm": 0.23790306908901832,
|
2793 |
+
"learning_rate": 0.00018804807034467733,
|
2794 |
+
"loss": 1.2237,
|
2795 |
+
"step": 398
|
2796 |
+
},
|
2797 |
+
{
|
2798 |
+
"epoch": 0.73,
|
2799 |
+
"grad_norm": 0.20126988767112128,
|
2800 |
+
"learning_rate": 0.0001879473751206489,
|
2801 |
+
"loss": 1.2731,
|
2802 |
+
"step": 399
|
2803 |
+
},
|
2804 |
+
{
|
2805 |
+
"epoch": 0.73,
|
2806 |
+
"grad_norm": 0.3336380339194037,
|
2807 |
+
"learning_rate": 0.00018784628468831996,
|
2808 |
+
"loss": 1.2369,
|
2809 |
+
"step": 400
|
2810 |
+
},
|
2811 |
+
{
|
2812 |
+
"epoch": 0.73,
|
2813 |
+
"grad_norm": 0.5054330893305989,
|
2814 |
+
"learning_rate": 0.0001877447995019596,
|
2815 |
+
"loss": 1.2443,
|
2816 |
+
"step": 401
|
2817 |
+
},
|
2818 |
+
{
|
2819 |
+
"epoch": 0.73,
|
2820 |
+
"grad_norm": 0.2297866279715136,
|
2821 |
+
"learning_rate": 0.0001876429200176108,
|
2822 |
+
"loss": 1.2376,
|
2823 |
+
"step": 402
|
2824 |
+
},
|
2825 |
+
{
|
2826 |
+
"epoch": 0.73,
|
2827 |
+
"grad_norm": 0.39350567174184636,
|
2828 |
+
"learning_rate": 0.00018754064669308858,
|
2829 |
+
"loss": 1.2126,
|
2830 |
+
"step": 403
|
2831 |
+
},
|
2832 |
+
{
|
2833 |
+
"epoch": 0.74,
|
2834 |
+
"grad_norm": 0.2025361091435325,
|
2835 |
+
"learning_rate": 0.00018743797998797753,
|
2836 |
+
"loss": 1.2224,
|
2837 |
+
"step": 404
|
2838 |
+
},
|
2839 |
+
{
|
2840 |
+
"epoch": 0.74,
|
2841 |
+
"grad_norm": 0.31824903419753814,
|
2842 |
+
"learning_rate": 0.00018733492036363005,
|
2843 |
+
"loss": 1.2942,
|
2844 |
+
"step": 405
|
2845 |
+
},
|
2846 |
+
{
|
2847 |
+
"epoch": 0.74,
|
2848 |
+
"grad_norm": 2.4642066748643017,
|
2849 |
+
"learning_rate": 0.00018723146828316428,
|
2850 |
+
"loss": 1.2515,
|
2851 |
+
"step": 406
|
2852 |
+
},
|
2853 |
+
{
|
2854 |
+
"epoch": 0.74,
|
2855 |
+
"grad_norm": 0.7833055646295342,
|
2856 |
+
"learning_rate": 0.00018712762421146183,
|
2857 |
+
"loss": 1.2207,
|
2858 |
+
"step": 407
|
2859 |
+
},
|
2860 |
+
{
|
2861 |
+
"epoch": 0.74,
|
2862 |
+
"grad_norm": 0.2810249021786599,
|
2863 |
+
"learning_rate": 0.00018702338861516587,
|
2864 |
+
"loss": 1.2755,
|
2865 |
+
"step": 408
|
2866 |
+
},
|
2867 |
+
{
|
2868 |
+
"epoch": 0.74,
|
2869 |
+
"grad_norm": 0.460995724241333,
|
2870 |
+
"learning_rate": 0.0001869187619626789,
|
2871 |
+
"loss": 1.2856,
|
2872 |
+
"step": 409
|
2873 |
+
},
|
2874 |
+
{
|
2875 |
+
"epoch": 0.75,
|
2876 |
+
"grad_norm": 0.49139203044984286,
|
2877 |
+
"learning_rate": 0.00018681374472416073,
|
2878 |
+
"loss": 1.2392,
|
2879 |
+
"step": 410
|
2880 |
+
},
|
2881 |
+
{
|
2882 |
+
"epoch": 0.75,
|
2883 |
+
"grad_norm": 2.691604613969173,
|
2884 |
+
"learning_rate": 0.0001867083373715264,
|
2885 |
+
"loss": 1.2992,
|
2886 |
+
"step": 411
|
2887 |
+
},
|
2888 |
+
{
|
2889 |
+
"epoch": 0.75,
|
2890 |
+
"grad_norm": 0.8014112047318501,
|
2891 |
+
"learning_rate": 0.00018660254037844388,
|
2892 |
+
"loss": 1.2683,
|
2893 |
+
"step": 412
|
2894 |
+
},
|
2895 |
+
{
|
2896 |
+
"epoch": 0.75,
|
2897 |
+
"grad_norm": 0.31614342841331383,
|
2898 |
+
"learning_rate": 0.00018649635422033215,
|
2899 |
+
"loss": 1.2356,
|
2900 |
+
"step": 413
|
2901 |
+
},
|
2902 |
+
{
|
2903 |
+
"epoch": 0.75,
|
2904 |
+
"grad_norm": 0.2559855196513244,
|
2905 |
+
"learning_rate": 0.000186389779374359,
|
2906 |
+
"loss": 1.2053,
|
2907 |
+
"step": 414
|
2908 |
+
},
|
2909 |
+
{
|
2910 |
+
"epoch": 0.76,
|
2911 |
+
"grad_norm": 1.6613999986014714,
|
2912 |
+
"learning_rate": 0.0001862828163194388,
|
2913 |
+
"loss": 1.2568,
|
2914 |
+
"step": 415
|
2915 |
+
},
|
2916 |
+
{
|
2917 |
+
"epoch": 0.76,
|
2918 |
+
"grad_norm": 0.27190082167109786,
|
2919 |
+
"learning_rate": 0.0001861754655362304,
|
2920 |
+
"loss": 1.1288,
|
2921 |
+
"step": 416
|
2922 |
+
},
|
2923 |
+
{
|
2924 |
+
"epoch": 0.76,
|
2925 |
+
"grad_norm": 0.43819582203066043,
|
2926 |
+
"learning_rate": 0.00018606772750713504,
|
2927 |
+
"loss": 1.1758,
|
2928 |
+
"step": 417
|
2929 |
+
},
|
2930 |
+
{
|
2931 |
+
"epoch": 0.76,
|
2932 |
+
"grad_norm": 0.41738497400383384,
|
2933 |
+
"learning_rate": 0.0001859596027162941,
|
2934 |
+
"loss": 1.2993,
|
2935 |
+
"step": 418
|
2936 |
+
},
|
2937 |
+
{
|
2938 |
+
"epoch": 0.76,
|
2939 |
+
"grad_norm": 0.2595142634740817,
|
2940 |
+
"learning_rate": 0.000185851091649587,
|
2941 |
+
"loss": 1.269,
|
2942 |
+
"step": 419
|
2943 |
+
},
|
2944 |
+
{
|
2945 |
+
"epoch": 0.77,
|
2946 |
+
"grad_norm": 0.2795314201020271,
|
2947 |
+
"learning_rate": 0.00018574219479462878,
|
2948 |
+
"loss": 1.1915,
|
2949 |
+
"step": 420
|
2950 |
+
},
|
2951 |
+
{
|
2952 |
+
"epoch": 0.77,
|
2953 |
+
"grad_norm": 0.2502992494749938,
|
2954 |
+
"learning_rate": 0.00018563291264076835,
|
2955 |
+
"loss": 1.2157,
|
2956 |
+
"step": 421
|
2957 |
+
},
|
2958 |
+
{
|
2959 |
+
"epoch": 0.77,
|
2960 |
+
"grad_norm": 0.27422512335538374,
|
2961 |
+
"learning_rate": 0.00018552324567908585,
|
2962 |
+
"loss": 1.2541,
|
2963 |
+
"step": 422
|
2964 |
+
},
|
2965 |
+
{
|
2966 |
+
"epoch": 0.77,
|
2967 |
+
"grad_norm": 1.3360989016060905,
|
2968 |
+
"learning_rate": 0.00018541319440239066,
|
2969 |
+
"loss": 1.2666,
|
2970 |
+
"step": 423
|
2971 |
+
},
|
2972 |
+
{
|
2973 |
+
"epoch": 0.77,
|
2974 |
+
"grad_norm": 1.9441131913572127,
|
2975 |
+
"learning_rate": 0.00018530275930521924,
|
2976 |
+
"loss": 1.2924,
|
2977 |
+
"step": 424
|
2978 |
+
},
|
2979 |
+
{
|
2980 |
+
"epoch": 0.77,
|
2981 |
+
"grad_norm": 0.3772373301771213,
|
2982 |
+
"learning_rate": 0.00018519194088383273,
|
2983 |
+
"loss": 1.1952,
|
2984 |
+
"step": 425
|
2985 |
+
},
|
2986 |
+
{
|
2987 |
+
"epoch": 0.78,
|
2988 |
+
"grad_norm": 0.22091753616251295,
|
2989 |
+
"learning_rate": 0.0001850807396362148,
|
2990 |
+
"loss": 1.1858,
|
2991 |
+
"step": 426
|
2992 |
+
},
|
2993 |
+
{
|
2994 |
+
"epoch": 0.78,
|
2995 |
+
"grad_norm": 0.21423504993321807,
|
2996 |
+
"learning_rate": 0.00018496915606206951,
|
2997 |
+
"loss": 1.2245,
|
2998 |
+
"step": 427
|
2999 |
+
},
|
3000 |
+
{
|
3001 |
+
"epoch": 0.78,
|
3002 |
+
"grad_norm": 0.5238946238105926,
|
3003 |
+
"learning_rate": 0.00018485719066281892,
|
3004 |
+
"loss": 1.2351,
|
3005 |
+
"step": 428
|
3006 |
+
},
|
3007 |
+
{
|
3008 |
+
"epoch": 0.78,
|
3009 |
+
"grad_norm": 0.3037858949309141,
|
3010 |
+
"learning_rate": 0.0001847448439416009,
|
3011 |
+
"loss": 1.1669,
|
3012 |
+
"step": 429
|
3013 |
+
},
|
3014 |
+
{
|
3015 |
+
"epoch": 0.78,
|
3016 |
+
"grad_norm": 0.21553286799952254,
|
3017 |
+
"learning_rate": 0.00018463211640326686,
|
3018 |
+
"loss": 1.1454,
|
3019 |
+
"step": 430
|
3020 |
+
},
|
3021 |
+
{
|
3022 |
+
"epoch": 0.79,
|
3023 |
+
"grad_norm": 0.202875547805464,
|
3024 |
+
"learning_rate": 0.0001845190085543795,
|
3025 |
+
"loss": 1.188,
|
3026 |
+
"step": 431
|
3027 |
+
},
|
3028 |
+
{
|
3029 |
+
"epoch": 0.79,
|
3030 |
+
"grad_norm": 0.24385408620619278,
|
3031 |
+
"learning_rate": 0.00018440552090321047,
|
3032 |
+
"loss": 1.2307,
|
3033 |
+
"step": 432
|
3034 |
+
},
|
3035 |
+
{
|
3036 |
+
"epoch": 0.79,
|
3037 |
+
"grad_norm": 0.23793944272430378,
|
3038 |
+
"learning_rate": 0.0001842916539597382,
|
3039 |
+
"loss": 1.2253,
|
3040 |
+
"step": 433
|
3041 |
+
},
|
3042 |
+
{
|
3043 |
+
"epoch": 0.79,
|
3044 |
+
"grad_norm": 0.17062488448810784,
|
3045 |
+
"learning_rate": 0.0001841774082356455,
|
3046 |
+
"loss": 1.2681,
|
3047 |
+
"step": 434
|
3048 |
+
},
|
3049 |
+
{
|
3050 |
+
"epoch": 0.79,
|
3051 |
+
"grad_norm": 0.20003742001916064,
|
3052 |
+
"learning_rate": 0.00018406278424431736,
|
3053 |
+
"loss": 1.2428,
|
3054 |
+
"step": 435
|
3055 |
+
},
|
3056 |
+
{
|
3057 |
+
"epoch": 0.79,
|
3058 |
+
"grad_norm": 0.2696052831337752,
|
3059 |
+
"learning_rate": 0.0001839477825008385,
|
3060 |
+
"loss": 1.2945,
|
3061 |
+
"step": 436
|
3062 |
+
},
|
3063 |
+
{
|
3064 |
+
"epoch": 0.8,
|
3065 |
+
"grad_norm": 0.23302960820538443,
|
3066 |
+
"learning_rate": 0.00018383240352199117,
|
3067 |
+
"loss": 1.1718,
|
3068 |
+
"step": 437
|
3069 |
+
},
|
3070 |
+
{
|
3071 |
+
"epoch": 0.8,
|
3072 |
+
"grad_norm": 0.38187833239777536,
|
3073 |
+
"learning_rate": 0.00018371664782625287,
|
3074 |
+
"loss": 1.2311,
|
3075 |
+
"step": 438
|
3076 |
+
},
|
3077 |
+
{
|
3078 |
+
"epoch": 0.8,
|
3079 |
+
"grad_norm": 0.4052561772533732,
|
3080 |
+
"learning_rate": 0.00018360051593379383,
|
3081 |
+
"loss": 1.1639,
|
3082 |
+
"step": 439
|
3083 |
+
},
|
3084 |
+
{
|
3085 |
+
"epoch": 0.8,
|
3086 |
+
"grad_norm": 0.23379763821020377,
|
3087 |
+
"learning_rate": 0.0001834840083664749,
|
3088 |
+
"loss": 1.1809,
|
3089 |
+
"step": 440
|
3090 |
+
},
|
3091 |
+
{
|
3092 |
+
"epoch": 0.8,
|
3093 |
+
"grad_norm": 0.2368414607613928,
|
3094 |
+
"learning_rate": 0.00018336712564784503,
|
3095 |
+
"loss": 1.2357,
|
3096 |
+
"step": 441
|
3097 |
+
},
|
3098 |
+
{
|
3099 |
+
"epoch": 0.81,
|
3100 |
+
"grad_norm": 0.20230633988510938,
|
3101 |
+
"learning_rate": 0.000183249868303139,
|
3102 |
+
"loss": 1.1851,
|
3103 |
+
"step": 442
|
3104 |
+
},
|
3105 |
+
{
|
3106 |
+
"epoch": 0.81,
|
3107 |
+
"grad_norm": 0.170513157244292,
|
3108 |
+
"learning_rate": 0.00018313223685927505,
|
3109 |
+
"loss": 1.205,
|
3110 |
+
"step": 443
|
3111 |
+
},
|
3112 |
+
{
|
3113 |
+
"epoch": 0.81,
|
3114 |
+
"grad_norm": 0.18082295035256266,
|
3115 |
+
"learning_rate": 0.0001830142318448525,
|
3116 |
+
"loss": 1.2305,
|
3117 |
+
"step": 444
|
3118 |
+
},
|
3119 |
+
{
|
3120 |
+
"epoch": 0.81,
|
3121 |
+
"grad_norm": 0.18286299264146286,
|
3122 |
+
"learning_rate": 0.00018289585379014942,
|
3123 |
+
"loss": 1.23,
|
3124 |
+
"step": 445
|
3125 |
+
},
|
3126 |
+
{
|
3127 |
+
"epoch": 0.81,
|
3128 |
+
"grad_norm": 0.17868104103482751,
|
3129 |
+
"learning_rate": 0.00018277710322712012,
|
3130 |
+
"loss": 1.2894,
|
3131 |
+
"step": 446
|
3132 |
+
},
|
3133 |
+
{
|
3134 |
+
"epoch": 0.81,
|
3135 |
+
"grad_norm": 0.1820411127336495,
|
3136 |
+
"learning_rate": 0.00018265798068939294,
|
3137 |
+
"loss": 1.2395,
|
3138 |
+
"step": 447
|
3139 |
+
},
|
3140 |
+
{
|
3141 |
+
"epoch": 0.82,
|
3142 |
+
"grad_norm": 0.1738237541783663,
|
3143 |
+
"learning_rate": 0.0001825384867122677,
|
3144 |
+
"loss": 1.1576,
|
3145 |
+
"step": 448
|
3146 |
+
},
|
3147 |
+
{
|
3148 |
+
"epoch": 0.82,
|
3149 |
+
"grad_norm": 0.15693445967795147,
|
3150 |
+
"learning_rate": 0.0001824186218327134,
|
3151 |
+
"loss": 1.0809,
|
3152 |
+
"step": 449
|
3153 |
+
},
|
3154 |
+
{
|
3155 |
+
"epoch": 0.82,
|
3156 |
+
"grad_norm": 0.18509145652208978,
|
3157 |
+
"learning_rate": 0.00018229838658936564,
|
3158 |
+
"loss": 1.2717,
|
3159 |
+
"step": 450
|
3160 |
+
},
|
3161 |
+
{
|
3162 |
+
"epoch": 0.82,
|
3163 |
+
"grad_norm": 0.14702488366564262,
|
3164 |
+
"learning_rate": 0.0001821777815225245,
|
3165 |
+
"loss": 1.2236,
|
3166 |
+
"step": 451
|
3167 |
+
},
|
3168 |
+
{
|
3169 |
+
"epoch": 0.82,
|
3170 |
+
"grad_norm": 0.1828399354418095,
|
3171 |
+
"learning_rate": 0.00018205680717415187,
|
3172 |
+
"loss": 1.2565,
|
3173 |
+
"step": 452
|
3174 |
+
},
|
3175 |
+
{
|
3176 |
+
"epoch": 0.83,
|
3177 |
+
"grad_norm": 0.17460984182013486,
|
3178 |
+
"learning_rate": 0.00018193546408786898,
|
3179 |
+
"loss": 1.2474,
|
3180 |
+
"step": 453
|
3181 |
+
},
|
3182 |
+
{
|
3183 |
+
"epoch": 0.83,
|
3184 |
+
"grad_norm": 0.2001623109673152,
|
3185 |
+
"learning_rate": 0.00018181375280895416,
|
3186 |
+
"loss": 1.2544,
|
3187 |
+
"step": 454
|
3188 |
+
},
|
3189 |
+
{
|
3190 |
+
"epoch": 0.83,
|
3191 |
+
"grad_norm": 0.17228631742863837,
|
3192 |
+
"learning_rate": 0.00018169167388434025,
|
3193 |
+
"loss": 1.1851,
|
3194 |
+
"step": 455
|
3195 |
+
},
|
3196 |
+
{
|
3197 |
+
"epoch": 0.83,
|
3198 |
+
"grad_norm": 0.1644862232819482,
|
3199 |
+
"learning_rate": 0.00018156922786261216,
|
3200 |
+
"loss": 1.1817,
|
3201 |
+
"step": 456
|
3202 |
+
},
|
3203 |
+
{
|
3204 |
+
"epoch": 0.83,
|
3205 |
+
"grad_norm": 0.19775186397477057,
|
3206 |
+
"learning_rate": 0.00018144641529400446,
|
3207 |
+
"loss": 1.257,
|
3208 |
+
"step": 457
|
3209 |
+
},
|
3210 |
+
{
|
3211 |
+
"epoch": 0.83,
|
3212 |
+
"grad_norm": 0.1626281991220394,
|
3213 |
+
"learning_rate": 0.00018132323673039885,
|
3214 |
+
"loss": 1.2277,
|
3215 |
+
"step": 458
|
3216 |
+
},
|
3217 |
+
{
|
3218 |
+
"epoch": 0.84,
|
3219 |
+
"grad_norm": 0.16158256707311264,
|
3220 |
+
"learning_rate": 0.00018119969272532166,
|
3221 |
+
"loss": 1.1624,
|
3222 |
+
"step": 459
|
3223 |
+
},
|
3224 |
+
{
|
3225 |
+
"epoch": 0.84,
|
3226 |
+
"grad_norm": 0.17705809207051687,
|
3227 |
+
"learning_rate": 0.00018107578383394146,
|
3228 |
+
"loss": 1.2421,
|
3229 |
+
"step": 460
|
3230 |
+
},
|
3231 |
+
{
|
3232 |
+
"epoch": 0.84,
|
3233 |
+
"grad_norm": 0.17639060401882287,
|
3234 |
+
"learning_rate": 0.00018095151061306645,
|
3235 |
+
"loss": 1.285,
|
3236 |
+
"step": 461
|
3237 |
+
},
|
3238 |
+
{
|
3239 |
+
"epoch": 0.84,
|
3240 |
+
"grad_norm": 0.16918796486576196,
|
3241 |
+
"learning_rate": 0.00018082687362114212,
|
3242 |
+
"loss": 1.2606,
|
3243 |
+
"step": 462
|
3244 |
+
},
|
3245 |
+
{
|
3246 |
+
"epoch": 0.84,
|
3247 |
+
"grad_norm": 0.15968377185965665,
|
3248 |
+
"learning_rate": 0.0001807018734182485,
|
3249 |
+
"loss": 1.194,
|
3250 |
+
"step": 463
|
3251 |
+
},
|
3252 |
+
{
|
3253 |
+
"epoch": 0.85,
|
3254 |
+
"grad_norm": 0.17537027967397978,
|
3255 |
+
"learning_rate": 0.00018057651056609784,
|
3256 |
+
"loss": 1.1594,
|
3257 |
+
"step": 464
|
3258 |
+
},
|
3259 |
+
{
|
3260 |
+
"epoch": 0.85,
|
3261 |
+
"grad_norm": 0.15753665403127565,
|
3262 |
+
"learning_rate": 0.00018045078562803203,
|
3263 |
+
"loss": 1.1382,
|
3264 |
+
"step": 465
|
3265 |
+
},
|
3266 |
+
{
|
3267 |
+
"epoch": 0.85,
|
3268 |
+
"grad_norm": 0.17121200763916436,
|
3269 |
+
"learning_rate": 0.00018032469916902003,
|
3270 |
+
"loss": 1.2286,
|
3271 |
+
"step": 466
|
3272 |
+
},
|
3273 |
+
{
|
3274 |
+
"epoch": 0.85,
|
3275 |
+
"grad_norm": 0.19120510133331003,
|
3276 |
+
"learning_rate": 0.00018019825175565542,
|
3277 |
+
"loss": 1.2835,
|
3278 |
+
"step": 467
|
3279 |
+
},
|
3280 |
+
{
|
3281 |
+
"epoch": 0.85,
|
3282 |
+
"grad_norm": 0.1671735980123817,
|
3283 |
+
"learning_rate": 0.0001800714439561538,
|
3284 |
+
"loss": 1.2201,
|
3285 |
+
"step": 468
|
3286 |
+
},
|
3287 |
+
{
|
3288 |
+
"epoch": 0.85,
|
3289 |
+
"grad_norm": 0.1579098534969056,
|
3290 |
+
"learning_rate": 0.00017994427634035015,
|
3291 |
+
"loss": 1.2156,
|
3292 |
+
"step": 469
|
3293 |
+
},
|
3294 |
+
{
|
3295 |
+
"epoch": 0.86,
|
3296 |
+
"grad_norm": 0.1746075421158512,
|
3297 |
+
"learning_rate": 0.00017981674947969636,
|
3298 |
+
"loss": 1.2049,
|
3299 |
+
"step": 470
|
3300 |
+
},
|
3301 |
+
{
|
3302 |
+
"epoch": 0.86,
|
3303 |
+
"grad_norm": 0.16878182886737042,
|
3304 |
+
"learning_rate": 0.00017968886394725874,
|
3305 |
+
"loss": 1.2204,
|
3306 |
+
"step": 471
|
3307 |
+
},
|
3308 |
+
{
|
3309 |
+
"epoch": 0.86,
|
3310 |
+
"grad_norm": 0.16725956538286493,
|
3311 |
+
"learning_rate": 0.00017956062031771535,
|
3312 |
+
"loss": 1.2091,
|
3313 |
+
"step": 472
|
3314 |
+
},
|
3315 |
+
{
|
3316 |
+
"epoch": 0.86,
|
3317 |
+
"grad_norm": 0.18877845951705005,
|
3318 |
+
"learning_rate": 0.00017943201916735335,
|
3319 |
+
"loss": 1.241,
|
3320 |
+
"step": 473
|
3321 |
+
},
|
3322 |
+
{
|
3323 |
+
"epoch": 0.86,
|
3324 |
+
"grad_norm": 0.180337447476004,
|
3325 |
+
"learning_rate": 0.00017930306107406653,
|
3326 |
+
"loss": 1.2253,
|
3327 |
+
"step": 474
|
3328 |
+
},
|
3329 |
+
{
|
3330 |
+
"epoch": 0.87,
|
3331 |
+
"grad_norm": 0.16688572366717752,
|
3332 |
+
"learning_rate": 0.0001791737466173527,
|
3333 |
+
"loss": 1.239,
|
3334 |
+
"step": 475
|
3335 |
+
},
|
3336 |
+
{
|
3337 |
+
"epoch": 0.87,
|
3338 |
+
"grad_norm": 0.15385917621135983,
|
3339 |
+
"learning_rate": 0.00017904407637831099,
|
3340 |
+
"loss": 1.2476,
|
3341 |
+
"step": 476
|
3342 |
+
},
|
3343 |
+
{
|
3344 |
+
"epoch": 0.87,
|
3345 |
+
"grad_norm": 0.17725645269055587,
|
3346 |
+
"learning_rate": 0.00017891405093963938,
|
3347 |
+
"loss": 1.2599,
|
3348 |
+
"step": 477
|
3349 |
+
},
|
3350 |
+
{
|
3351 |
+
"epoch": 0.87,
|
3352 |
+
"grad_norm": 0.14758551718901028,
|
3353 |
+
"learning_rate": 0.00017878367088563195,
|
3354 |
+
"loss": 1.2249,
|
3355 |
+
"step": 478
|
3356 |
+
},
|
3357 |
+
{
|
3358 |
+
"epoch": 0.87,
|
3359 |
+
"grad_norm": 0.15216962408661316,
|
3360 |
+
"learning_rate": 0.00017865293680217637,
|
3361 |
+
"loss": 1.2346,
|
3362 |
+
"step": 479
|
3363 |
+
},
|
3364 |
+
{
|
3365 |
+
"epoch": 0.87,
|
3366 |
+
"grad_norm": 0.16679282848599514,
|
3367 |
+
"learning_rate": 0.00017852184927675112,
|
3368 |
+
"loss": 1.2443,
|
3369 |
+
"step": 480
|
3370 |
+
},
|
3371 |
+
{
|
3372 |
+
"epoch": 0.88,
|
3373 |
+
"grad_norm": 0.16723562739069214,
|
3374 |
+
"learning_rate": 0.00017839040889842305,
|
3375 |
+
"loss": 1.224,
|
3376 |
+
"step": 481
|
3377 |
+
},
|
3378 |
+
{
|
3379 |
+
"epoch": 0.88,
|
3380 |
+
"grad_norm": 0.15922276239929914,
|
3381 |
+
"learning_rate": 0.00017825861625784455,
|
3382 |
+
"loss": 1.2739,
|
3383 |
+
"step": 482
|
3384 |
+
},
|
3385 |
+
{
|
3386 |
+
"epoch": 0.88,
|
3387 |
+
"grad_norm": 0.1510107938469514,
|
3388 |
+
"learning_rate": 0.00017812647194725094,
|
3389 |
+
"loss": 1.1764,
|
3390 |
+
"step": 483
|
3391 |
+
},
|
3392 |
+
{
|
3393 |
+
"epoch": 0.88,
|
3394 |
+
"grad_norm": 0.16446999054333494,
|
3395 |
+
"learning_rate": 0.00017799397656045792,
|
3396 |
+
"loss": 1.2498,
|
3397 |
+
"step": 484
|
3398 |
+
},
|
3399 |
+
{
|
3400 |
+
"epoch": 0.88,
|
3401 |
+
"grad_norm": 0.18566301651865832,
|
3402 |
+
"learning_rate": 0.00017786113069285874,
|
3403 |
+
"loss": 1.232,
|
3404 |
+
"step": 485
|
3405 |
+
},
|
3406 |
+
{
|
3407 |
+
"epoch": 0.89,
|
3408 |
+
"grad_norm": 0.20592971655306183,
|
3409 |
+
"learning_rate": 0.00017772793494142167,
|
3410 |
+
"loss": 1.1586,
|
3411 |
+
"step": 486
|
3412 |
+
},
|
3413 |
+
{
|
3414 |
+
"epoch": 0.89,
|
3415 |
+
"grad_norm": 0.1581947714375729,
|
3416 |
+
"learning_rate": 0.00017759438990468725,
|
3417 |
+
"loss": 1.2502,
|
3418 |
+
"step": 487
|
3419 |
+
},
|
3420 |
+
{
|
3421 |
+
"epoch": 0.89,
|
3422 |
+
"grad_norm": 0.15466760695169174,
|
3423 |
+
"learning_rate": 0.00017746049618276545,
|
3424 |
+
"loss": 1.1605,
|
3425 |
+
"step": 488
|
3426 |
+
},
|
3427 |
+
{
|
3428 |
+
"epoch": 0.89,
|
3429 |
+
"grad_norm": 0.16041506222444918,
|
3430 |
+
"learning_rate": 0.00017732625437733335,
|
3431 |
+
"loss": 1.2778,
|
3432 |
+
"step": 489
|
3433 |
+
},
|
3434 |
+
{
|
3435 |
+
"epoch": 0.89,
|
3436 |
+
"grad_norm": 0.17168109661676773,
|
3437 |
+
"learning_rate": 0.0001771916650916321,
|
3438 |
+
"loss": 1.262,
|
3439 |
+
"step": 490
|
3440 |
+
},
|
3441 |
+
{
|
3442 |
+
"epoch": 0.89,
|
3443 |
+
"grad_norm": 0.1788973186498254,
|
3444 |
+
"learning_rate": 0.00017705672893046425,
|
3445 |
+
"loss": 1.2111,
|
3446 |
+
"step": 491
|
3447 |
+
},
|
3448 |
+
{
|
3449 |
+
"epoch": 0.9,
|
3450 |
+
"grad_norm": 0.1759644359346382,
|
3451 |
+
"learning_rate": 0.00017692144650019125,
|
3452 |
+
"loss": 1.2546,
|
3453 |
+
"step": 492
|
3454 |
+
},
|
3455 |
+
{
|
3456 |
+
"epoch": 0.9,
|
3457 |
+
"grad_norm": 0.15710749736088767,
|
3458 |
+
"learning_rate": 0.0001767858184087304,
|
3459 |
+
"loss": 1.2487,
|
3460 |
+
"step": 493
|
3461 |
+
},
|
3462 |
+
{
|
3463 |
+
"epoch": 0.9,
|
3464 |
+
"grad_norm": 0.1648235522911144,
|
3465 |
+
"learning_rate": 0.00017664984526555248,
|
3466 |
+
"loss": 1.2469,
|
3467 |
+
"step": 494
|
3468 |
+
},
|
3469 |
+
{
|
3470 |
+
"epoch": 0.9,
|
3471 |
+
"grad_norm": 0.15452607969890703,
|
3472 |
+
"learning_rate": 0.0001765135276816787,
|
3473 |
+
"loss": 1.1855,
|
3474 |
+
"step": 495
|
3475 |
+
},
|
3476 |
+
{
|
3477 |
+
"epoch": 0.9,
|
3478 |
+
"grad_norm": 0.1837695597880219,
|
3479 |
+
"learning_rate": 0.00017637686626967812,
|
3480 |
+
"loss": 1.2185,
|
3481 |
+
"step": 496
|
3482 |
+
},
|
3483 |
+
{
|
3484 |
+
"epoch": 0.91,
|
3485 |
+
"grad_norm": 0.15861390725762364,
|
3486 |
+
"learning_rate": 0.00017623986164366486,
|
3487 |
+
"loss": 1.2056,
|
3488 |
+
"step": 497
|
3489 |
+
},
|
3490 |
+
{
|
3491 |
+
"epoch": 0.91,
|
3492 |
+
"grad_norm": 0.1663260460966887,
|
3493 |
+
"learning_rate": 0.00017610251441929533,
|
3494 |
+
"loss": 1.1242,
|
3495 |
+
"step": 498
|
3496 |
+
},
|
3497 |
+
{
|
3498 |
+
"epoch": 0.91,
|
3499 |
+
"grad_norm": 0.1803309720529981,
|
3500 |
+
"learning_rate": 0.00017596482521376546,
|
3501 |
+
"loss": 1.2938,
|
3502 |
+
"step": 499
|
3503 |
+
},
|
3504 |
+
{
|
3505 |
+
"epoch": 0.91,
|
3506 |
+
"grad_norm": 0.14909085011764342,
|
3507 |
+
"learning_rate": 0.00017582679464580797,
|
3508 |
+
"loss": 1.1953,
|
3509 |
+
"step": 500
|
3510 |
+
},
|
3511 |
+
{
|
3512 |
+
"epoch": 0.91,
|
3513 |
+
"grad_norm": 0.15779022242482527,
|
3514 |
+
"learning_rate": 0.00017568842333568952,
|
3515 |
+
"loss": 1.2792,
|
3516 |
+
"step": 501
|
3517 |
+
},
|
3518 |
+
{
|
3519 |
+
"epoch": 0.91,
|
3520 |
+
"grad_norm": 0.1553327313967345,
|
3521 |
+
"learning_rate": 0.00017554971190520798,
|
3522 |
+
"loss": 1.2286,
|
3523 |
+
"step": 502
|
3524 |
+
},
|
3525 |
+
{
|
3526 |
+
"epoch": 0.92,
|
3527 |
+
"grad_norm": 0.16363964666273684,
|
3528 |
+
"learning_rate": 0.00017541066097768963,
|
3529 |
+
"loss": 1.2753,
|
3530 |
+
"step": 503
|
3531 |
+
},
|
3532 |
+
{
|
3533 |
+
"epoch": 0.92,
|
3534 |
+
"grad_norm": 0.16668099163659675,
|
3535 |
+
"learning_rate": 0.00017527127117798635,
|
3536 |
+
"loss": 1.185,
|
3537 |
+
"step": 504
|
3538 |
+
},
|
3539 |
+
{
|
3540 |
+
"epoch": 0.92,
|
3541 |
+
"grad_norm": 0.13957568397594883,
|
3542 |
+
"learning_rate": 0.0001751315431324727,
|
3543 |
+
"loss": 1.143,
|
3544 |
+
"step": 505
|
3545 |
+
},
|
3546 |
+
{
|
3547 |
+
"epoch": 0.92,
|
3548 |
+
"grad_norm": 0.1553111736740035,
|
3549 |
+
"learning_rate": 0.00017499147746904335,
|
3550 |
+
"loss": 1.2492,
|
3551 |
+
"step": 506
|
3552 |
+
},
|
3553 |
+
{
|
3554 |
+
"epoch": 0.92,
|
3555 |
+
"grad_norm": 0.1691517335818193,
|
3556 |
+
"learning_rate": 0.00017485107481711012,
|
3557 |
+
"loss": 1.2619,
|
3558 |
+
"step": 507
|
3559 |
+
},
|
3560 |
+
{
|
3561 |
+
"epoch": 0.93,
|
3562 |
+
"grad_norm": 0.15480883994395986,
|
3563 |
+
"learning_rate": 0.00017471033580759903,
|
3564 |
+
"loss": 1.2396,
|
3565 |
+
"step": 508
|
3566 |
+
},
|
3567 |
+
{
|
3568 |
+
"epoch": 0.93,
|
3569 |
+
"grad_norm": 0.1451690143792058,
|
3570 |
+
"learning_rate": 0.00017456926107294765,
|
3571 |
+
"loss": 1.1732,
|
3572 |
+
"step": 509
|
3573 |
+
},
|
3574 |
+
{
|
3575 |
+
"epoch": 0.93,
|
3576 |
+
"grad_norm": 0.1524398957482947,
|
3577 |
+
"learning_rate": 0.00017442785124710227,
|
3578 |
+
"loss": 1.2083,
|
3579 |
+
"step": 510
|
3580 |
+
},
|
3581 |
+
{
|
3582 |
+
"epoch": 0.93,
|
3583 |
+
"grad_norm": 0.16790264977550012,
|
3584 |
+
"learning_rate": 0.0001742861069655148,
|
3585 |
+
"loss": 1.2201,
|
3586 |
+
"step": 511
|
3587 |
+
},
|
3588 |
+
{
|
3589 |
+
"epoch": 0.93,
|
3590 |
+
"grad_norm": 0.1529847047636337,
|
3591 |
+
"learning_rate": 0.0001741440288651403,
|
3592 |
+
"loss": 1.243,
|
3593 |
+
"step": 512
|
3594 |
+
},
|
3595 |
+
{
|
3596 |
+
"epoch": 0.93,
|
3597 |
+
"grad_norm": 0.1485875402374676,
|
3598 |
+
"learning_rate": 0.00017400161758443375,
|
3599 |
+
"loss": 1.2053,
|
3600 |
+
"step": 513
|
3601 |
+
},
|
3602 |
+
{
|
3603 |
+
"epoch": 0.94,
|
3604 |
+
"grad_norm": 0.16950094279079617,
|
3605 |
+
"learning_rate": 0.00017385887376334742,
|
3606 |
+
"loss": 1.1944,
|
3607 |
+
"step": 514
|
3608 |
+
},
|
3609 |
+
{
|
3610 |
+
"epoch": 0.94,
|
3611 |
+
"grad_norm": 0.15289337084330445,
|
3612 |
+
"learning_rate": 0.00017371579804332789,
|
3613 |
+
"loss": 1.2503,
|
3614 |
+
"step": 515
|
3615 |
+
},
|
3616 |
+
{
|
3617 |
+
"epoch": 0.94,
|
3618 |
+
"grad_norm": 0.15337063655317973,
|
3619 |
+
"learning_rate": 0.00017357239106731317,
|
3620 |
+
"loss": 1.3092,
|
3621 |
+
"step": 516
|
3622 |
+
},
|
3623 |
+
{
|
3624 |
+
"epoch": 0.94,
|
3625 |
+
"grad_norm": 0.1458937961897621,
|
3626 |
+
"learning_rate": 0.00017342865347972988,
|
3627 |
+
"loss": 1.2244,
|
3628 |
+
"step": 517
|
3629 |
+
},
|
3630 |
+
{
|
3631 |
+
"epoch": 0.94,
|
3632 |
+
"grad_norm": 0.19897118610161338,
|
3633 |
+
"learning_rate": 0.00017328458592649027,
|
3634 |
+
"loss": 1.2238,
|
3635 |
+
"step": 518
|
3636 |
+
},
|
3637 |
+
{
|
3638 |
+
"epoch": 0.95,
|
3639 |
+
"grad_norm": 0.15850805264911003,
|
3640 |
+
"learning_rate": 0.00017314018905498931,
|
3641 |
+
"loss": 1.195,
|
3642 |
+
"step": 519
|
3643 |
+
},
|
3644 |
+
{
|
3645 |
+
"epoch": 0.95,
|
3646 |
+
"grad_norm": 0.14445183074519347,
|
3647 |
+
"learning_rate": 0.00017299546351410197,
|
3648 |
+
"loss": 1.1974,
|
3649 |
+
"step": 520
|
3650 |
+
},
|
3651 |
+
{
|
3652 |
+
"epoch": 0.95,
|
3653 |
+
"grad_norm": 0.18180731722745677,
|
3654 |
+
"learning_rate": 0.00017285040995418,
|
3655 |
+
"loss": 1.2107,
|
3656 |
+
"step": 521
|
3657 |
+
},
|
3658 |
+
{
|
3659 |
+
"epoch": 0.95,
|
3660 |
+
"grad_norm": 0.14943874953193587,
|
3661 |
+
"learning_rate": 0.00017270502902704926,
|
3662 |
+
"loss": 1.1843,
|
3663 |
+
"step": 522
|
3664 |
+
},
|
3665 |
+
{
|
3666 |
+
"epoch": 0.95,
|
3667 |
+
"grad_norm": 0.15767466790910512,
|
3668 |
+
"learning_rate": 0.00017255932138600665,
|
3669 |
+
"loss": 1.1409,
|
3670 |
+
"step": 523
|
3671 |
+
},
|
3672 |
+
{
|
3673 |
+
"epoch": 0.95,
|
3674 |
+
"grad_norm": 0.16402921378654775,
|
3675 |
+
"learning_rate": 0.00017241328768581726,
|
3676 |
+
"loss": 1.2135,
|
3677 |
+
"step": 524
|
3678 |
+
},
|
3679 |
+
{
|
3680 |
+
"epoch": 0.96,
|
3681 |
+
"grad_norm": 0.15526246786505485,
|
3682 |
+
"learning_rate": 0.00017226692858271134,
|
3683 |
+
"loss": 1.2255,
|
3684 |
+
"step": 525
|
3685 |
+
},
|
3686 |
+
{
|
3687 |
+
"epoch": 0.96,
|
3688 |
+
"grad_norm": 0.16608155892622348,
|
3689 |
+
"learning_rate": 0.00017212024473438147,
|
3690 |
+
"loss": 1.2691,
|
3691 |
+
"step": 526
|
3692 |
+
},
|
3693 |
+
{
|
3694 |
+
"epoch": 0.96,
|
3695 |
+
"grad_norm": 0.14913271520144072,
|
3696 |
+
"learning_rate": 0.00017197323679997943,
|
3697 |
+
"loss": 1.1574,
|
3698 |
+
"step": 527
|
3699 |
+
},
|
3700 |
+
{
|
3701 |
+
"epoch": 0.96,
|
3702 |
+
"grad_norm": 0.1471910610421707,
|
3703 |
+
"learning_rate": 0.00017182590544011347,
|
3704 |
+
"loss": 1.2774,
|
3705 |
+
"step": 528
|
3706 |
+
},
|
3707 |
+
{
|
3708 |
+
"epoch": 0.96,
|
3709 |
+
"grad_norm": 0.1417464185073962,
|
3710 |
+
"learning_rate": 0.00017167825131684513,
|
3711 |
+
"loss": 1.2446,
|
3712 |
+
"step": 529
|
3713 |
+
},
|
3714 |
+
{
|
3715 |
+
"epoch": 0.97,
|
3716 |
+
"grad_norm": 0.1610488125634495,
|
3717 |
+
"learning_rate": 0.0001715302750936864,
|
3718 |
+
"loss": 1.2862,
|
3719 |
+
"step": 530
|
3720 |
+
},
|
3721 |
+
{
|
3722 |
+
"epoch": 0.97,
|
3723 |
+
"grad_norm": 0.20227974555123074,
|
3724 |
+
"learning_rate": 0.00017138197743559654,
|
3725 |
+
"loss": 1.207,
|
3726 |
+
"step": 531
|
3727 |
+
},
|
3728 |
+
{
|
3729 |
+
"epoch": 0.97,
|
3730 |
+
"grad_norm": 0.1355502559749413,
|
3731 |
+
"learning_rate": 0.00017123335900897946,
|
3732 |
+
"loss": 1.1019,
|
3733 |
+
"step": 532
|
3734 |
+
},
|
3735 |
+
{
|
3736 |
+
"epoch": 0.97,
|
3737 |
+
"grad_norm": 0.1559423167028215,
|
3738 |
+
"learning_rate": 0.00017108442048168038,
|
3739 |
+
"loss": 1.2549,
|
3740 |
+
"step": 533
|
3741 |
+
},
|
3742 |
+
{
|
3743 |
+
"epoch": 0.97,
|
3744 |
+
"grad_norm": 0.15898973818185586,
|
3745 |
+
"learning_rate": 0.00017093516252298296,
|
3746 |
+
"loss": 1.2705,
|
3747 |
+
"step": 534
|
3748 |
+
},
|
3749 |
+
{
|
3750 |
+
"epoch": 0.97,
|
3751 |
+
"grad_norm": 0.15169569998999652,
|
3752 |
+
"learning_rate": 0.00017078558580360632,
|
3753 |
+
"loss": 1.2454,
|
3754 |
+
"step": 535
|
3755 |
+
},
|
3756 |
+
{
|
3757 |
+
"epoch": 0.98,
|
3758 |
+
"grad_norm": 0.15976111665597925,
|
3759 |
+
"learning_rate": 0.00017063569099570196,
|
3760 |
+
"loss": 1.2585,
|
3761 |
+
"step": 536
|
3762 |
+
},
|
3763 |
+
{
|
3764 |
+
"epoch": 0.98,
|
3765 |
+
"grad_norm": 0.14488877221999352,
|
3766 |
+
"learning_rate": 0.00017048547877285077,
|
3767 |
+
"loss": 1.2169,
|
3768 |
+
"step": 537
|
3769 |
+
},
|
3770 |
+
{
|
3771 |
+
"epoch": 0.98,
|
3772 |
+
"grad_norm": 0.14919533098974924,
|
3773 |
+
"learning_rate": 0.00017033494981006002,
|
3774 |
+
"loss": 1.2358,
|
3775 |
+
"step": 538
|
3776 |
+
},
|
3777 |
+
{
|
3778 |
+
"epoch": 0.98,
|
3779 |
+
"grad_norm": 0.15251746717084805,
|
3780 |
+
"learning_rate": 0.00017018410478376032,
|
3781 |
+
"loss": 1.2241,
|
3782 |
+
"step": 539
|
3783 |
+
},
|
3784 |
+
{
|
3785 |
+
"epoch": 0.98,
|
3786 |
+
"grad_norm": 0.1456060482002663,
|
3787 |
+
"learning_rate": 0.00017003294437180255,
|
3788 |
+
"loss": 1.2298,
|
3789 |
+
"step": 540
|
3790 |
+
},
|
3791 |
+
{
|
3792 |
+
"epoch": 0.99,
|
3793 |
+
"grad_norm": 0.17048886778787248,
|
3794 |
+
"learning_rate": 0.00016988146925345484,
|
3795 |
+
"loss": 1.2707,
|
3796 |
+
"step": 541
|
3797 |
+
},
|
3798 |
+
{
|
3799 |
+
"epoch": 0.99,
|
3800 |
+
"grad_norm": 0.15304381059310815,
|
3801 |
+
"learning_rate": 0.00016972968010939954,
|
3802 |
+
"loss": 1.1498,
|
3803 |
+
"step": 542
|
3804 |
+
},
|
3805 |
+
{
|
3806 |
+
"epoch": 0.99,
|
3807 |
+
"grad_norm": 0.16590055969071696,
|
3808 |
+
"learning_rate": 0.0001695775776217301,
|
3809 |
+
"loss": 1.2481,
|
3810 |
+
"step": 543
|
3811 |
+
},
|
3812 |
+
{
|
3813 |
+
"epoch": 0.99,
|
3814 |
+
"grad_norm": 0.14299575837437278,
|
3815 |
+
"learning_rate": 0.00016942516247394807,
|
3816 |
+
"loss": 1.2058,
|
3817 |
+
"step": 544
|
3818 |
+
},
|
3819 |
+
{
|
3820 |
+
"epoch": 0.99,
|
3821 |
+
"grad_norm": 0.14275107775859475,
|
3822 |
+
"learning_rate": 0.00016927243535095997,
|
3823 |
+
"loss": 1.2178,
|
3824 |
+
"step": 545
|
3825 |
+
},
|
3826 |
+
{
|
3827 |
+
"epoch": 0.99,
|
3828 |
+
"grad_norm": 0.1554250137491414,
|
3829 |
+
"learning_rate": 0.0001691193969390742,
|
3830 |
+
"loss": 1.1197,
|
3831 |
+
"step": 546
|
3832 |
+
},
|
3833 |
+
{
|
3834 |
+
"epoch": 1.0,
|
3835 |
+
"grad_norm": 0.16958418467021688,
|
3836 |
+
"learning_rate": 0.0001689660479259981,
|
3837 |
+
"loss": 1.1768,
|
3838 |
+
"step": 547
|
3839 |
+
},
|
3840 |
+
{
|
3841 |
+
"epoch": 1.0,
|
3842 |
+
"grad_norm": 0.1546216583314497,
|
3843 |
+
"learning_rate": 0.00016881238900083473,
|
3844 |
+
"loss": 1.1741,
|
3845 |
+
"step": 548
|
3846 |
+
},
|
3847 |
+
{
|
3848 |
+
"epoch": 1.0,
|
3849 |
+
"grad_norm": 0.15287056494787424,
|
3850 |
+
"learning_rate": 0.0001686584208540797,
|
3851 |
+
"loss": 1.2328,
|
3852 |
+
"step": 549
|
3853 |
+
},
|
3854 |
+
{
|
3855 |
+
"epoch": 1.0,
|
3856 |
+
"grad_norm": 0.1419329373337611,
|
3857 |
+
"learning_rate": 0.0001685041441776183,
|
3858 |
+
"loss": 1.1743,
|
3859 |
+
"step": 550
|
3860 |
+
}
|
3861 |
+
],
|
3862 |
+
"logging_steps": 1.0,
|
3863 |
+
"max_steps": 1647,
|
3864 |
+
"num_input_tokens_seen": 0,
|
3865 |
+
"num_train_epochs": 3,
|
3866 |
+
"save_steps": 50,
|
3867 |
+
"total_flos": 5103643602714624.0,
|
3868 |
+
"train_batch_size": 1,
|
3869 |
+
"trial_name": null,
|
3870 |
+
"trial_params": null
|
3871 |
+
}
|
550/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4c6c256082b8d848443372d8fc6c44427099f0a764e044ba63c75a1f81db6afd
|
3 |
+
size 6712
|
550/zero_to_fp32.py
ADDED
@@ -0,0 +1,604 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import torch
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from collections import OrderedDict
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
+
from deepspeed.utils import logger
|
27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class zero_model_state:
|
34 |
+
buffers: dict()
|
35 |
+
param_shapes: dict()
|
36 |
+
shared_params: list
|
37 |
+
ds_version: int
|
38 |
+
frozen_param_shapes: dict()
|
39 |
+
frozen_param_fragments: dict()
|
40 |
+
|
41 |
+
|
42 |
+
debug = 0
|
43 |
+
|
44 |
+
# load to cpu
|
45 |
+
device = torch.device('cpu')
|
46 |
+
|
47 |
+
|
48 |
+
def atoi(text):
|
49 |
+
return int(text) if text.isdigit() else text
|
50 |
+
|
51 |
+
|
52 |
+
def natural_keys(text):
|
53 |
+
'''
|
54 |
+
alist.sort(key=natural_keys) sorts in human order
|
55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
+
(See Toothy's implementation in the comments)
|
57 |
+
'''
|
58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
+
|
60 |
+
|
61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
+
if not os.path.isdir(checkpoint_dir):
|
63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
+
|
65 |
+
# there should be only one file
|
66 |
+
if zero_stage <= 2:
|
67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
+
elif zero_stage == 3:
|
69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
+
|
71 |
+
if not os.path.exists(file):
|
72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
+
|
74 |
+
return file
|
75 |
+
|
76 |
+
|
77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
+
|
81 |
+
if len(ckpt_files) == 0:
|
82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
+
|
84 |
+
return ckpt_files
|
85 |
+
|
86 |
+
|
87 |
+
def get_optim_files(checkpoint_dir):
|
88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
+
|
90 |
+
|
91 |
+
def get_model_state_files(checkpoint_dir):
|
92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
+
|
94 |
+
|
95 |
+
def parse_model_states(files):
|
96 |
+
zero_model_states = []
|
97 |
+
for file in files:
|
98 |
+
state_dict = torch.load(file, map_location=device)
|
99 |
+
|
100 |
+
if BUFFER_NAMES not in state_dict:
|
101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
+
if debug:
|
104 |
+
print("Found buffers:", buffer_names)
|
105 |
+
|
106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
+
|
110 |
+
# collect parameters that are included in param_shapes
|
111 |
+
param_names = []
|
112 |
+
for s in param_shapes:
|
113 |
+
for name in s.keys():
|
114 |
+
param_names.append(name)
|
115 |
+
|
116 |
+
# update with frozen parameters
|
117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
+
if frozen_param_shapes is not None:
|
119 |
+
if debug:
|
120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
+
param_names += list(frozen_param_shapes.keys())
|
122 |
+
|
123 |
+
# handle shared params
|
124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
+
|
126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
+
|
128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
+
|
130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
131 |
+
param_shapes=param_shapes,
|
132 |
+
shared_params=shared_params,
|
133 |
+
ds_version=ds_version,
|
134 |
+
frozen_param_shapes=frozen_param_shapes,
|
135 |
+
frozen_param_fragments=frozen_param_fragments)
|
136 |
+
zero_model_states.append(z_model_state)
|
137 |
+
|
138 |
+
return zero_model_states
|
139 |
+
|
140 |
+
|
141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
+
|
143 |
+
total_files = len(files)
|
144 |
+
state_dicts = []
|
145 |
+
for f in files:
|
146 |
+
state_dict = torch.load(f, map_location=device)
|
147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
148 |
+
# and also handle the case where it was already removed by another helper script
|
149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
150 |
+
state_dicts.append(state_dict)
|
151 |
+
|
152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
156 |
+
|
157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
159 |
+
# use the max of the partition_count to get the dp world_size.
|
160 |
+
|
161 |
+
if type(world_size) is list:
|
162 |
+
world_size = max(world_size)
|
163 |
+
|
164 |
+
if world_size != total_files:
|
165 |
+
raise ValueError(
|
166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
168 |
+
)
|
169 |
+
|
170 |
+
# the groups are named differently in each stage
|
171 |
+
if zero_stage <= 2:
|
172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
173 |
+
elif zero_stage == 3:
|
174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
175 |
+
else:
|
176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
177 |
+
|
178 |
+
if zero_stage <= 2:
|
179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
180 |
+
elif zero_stage == 3:
|
181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
183 |
+
#
|
184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
186 |
+
|
187 |
+
fp32_flat_groups = [
|
188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
189 |
+
]
|
190 |
+
|
191 |
+
return zero_stage, world_size, fp32_flat_groups
|
192 |
+
|
193 |
+
|
194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
195 |
+
"""
|
196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
197 |
+
|
198 |
+
Args:
|
199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
200 |
+
|
201 |
+
"""
|
202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
203 |
+
|
204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
207 |
+
|
208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
209 |
+
|
210 |
+
zero_model_states = parse_model_states(model_files)
|
211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
212 |
+
|
213 |
+
if zero_stage <= 2:
|
214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
215 |
+
exclude_frozen_parameters)
|
216 |
+
elif zero_stage == 3:
|
217 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
218 |
+
exclude_frozen_parameters)
|
219 |
+
|
220 |
+
|
221 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
222 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
223 |
+
return
|
224 |
+
|
225 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
226 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
227 |
+
|
228 |
+
if debug:
|
229 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
230 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
231 |
+
|
232 |
+
wanted_params = len(frozen_param_shapes)
|
233 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
234 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
235 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
236 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
237 |
+
|
238 |
+
total_params = 0
|
239 |
+
total_numel = 0
|
240 |
+
for name, shape in frozen_param_shapes.items():
|
241 |
+
total_params += 1
|
242 |
+
unpartitioned_numel = shape.numel()
|
243 |
+
total_numel += unpartitioned_numel
|
244 |
+
|
245 |
+
state_dict[name] = frozen_param_fragments[name]
|
246 |
+
|
247 |
+
if debug:
|
248 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
249 |
+
|
250 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
251 |
+
|
252 |
+
|
253 |
+
def _has_callable(obj, fn):
|
254 |
+
attr = getattr(obj, fn, None)
|
255 |
+
return callable(attr)
|
256 |
+
|
257 |
+
|
258 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
259 |
+
param_shapes = zero_model_states[0].param_shapes
|
260 |
+
|
261 |
+
# Reconstruction protocol:
|
262 |
+
#
|
263 |
+
# XXX: document this
|
264 |
+
|
265 |
+
if debug:
|
266 |
+
for i in range(world_size):
|
267 |
+
for j in range(len(fp32_flat_groups[0])):
|
268 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
269 |
+
|
270 |
+
# XXX: memory usage doubles here (zero2)
|
271 |
+
num_param_groups = len(fp32_flat_groups[0])
|
272 |
+
merged_single_partition_of_fp32_groups = []
|
273 |
+
for i in range(num_param_groups):
|
274 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
275 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
276 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
277 |
+
avail_numel = sum(
|
278 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
279 |
+
|
280 |
+
if debug:
|
281 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
282 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
283 |
+
# not asserting if there is a mismatch due to possible padding
|
284 |
+
print(f"Have {avail_numel} numels to process.")
|
285 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
286 |
+
|
287 |
+
# params
|
288 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
289 |
+
# out-of-core computing solution
|
290 |
+
total_numel = 0
|
291 |
+
total_params = 0
|
292 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
293 |
+
offset = 0
|
294 |
+
avail_numel = full_single_fp32_vector.numel()
|
295 |
+
for name, shape in shapes.items():
|
296 |
+
|
297 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
298 |
+
total_numel += unpartitioned_numel
|
299 |
+
total_params += 1
|
300 |
+
|
301 |
+
if debug:
|
302 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
303 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
304 |
+
offset += unpartitioned_numel
|
305 |
+
|
306 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
307 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
308 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
309 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
310 |
+
align_to = 2 * world_size
|
311 |
+
|
312 |
+
def zero2_align(x):
|
313 |
+
return align_to * math.ceil(x / align_to)
|
314 |
+
|
315 |
+
if debug:
|
316 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
317 |
+
|
318 |
+
offset = zero2_align(offset)
|
319 |
+
avail_numel = zero2_align(avail_numel)
|
320 |
+
|
321 |
+
if debug:
|
322 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
323 |
+
|
324 |
+
# Sanity check
|
325 |
+
if offset != avail_numel:
|
326 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
327 |
+
|
328 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
329 |
+
|
330 |
+
|
331 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
332 |
+
exclude_frozen_parameters):
|
333 |
+
state_dict = OrderedDict()
|
334 |
+
|
335 |
+
# buffers
|
336 |
+
buffers = zero_model_states[0].buffers
|
337 |
+
state_dict.update(buffers)
|
338 |
+
if debug:
|
339 |
+
print(f"added {len(buffers)} buffers")
|
340 |
+
|
341 |
+
if not exclude_frozen_parameters:
|
342 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
343 |
+
|
344 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
345 |
+
|
346 |
+
# recover shared parameters
|
347 |
+
for pair in zero_model_states[0].shared_params:
|
348 |
+
if pair[1] in state_dict:
|
349 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
350 |
+
|
351 |
+
return state_dict
|
352 |
+
|
353 |
+
|
354 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
355 |
+
remainder = unpartitioned_numel % world_size
|
356 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
357 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
358 |
+
return partitioned_numel, padding_numel
|
359 |
+
|
360 |
+
|
361 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
362 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
363 |
+
return
|
364 |
+
|
365 |
+
if debug:
|
366 |
+
for i in range(world_size):
|
367 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
368 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
369 |
+
|
370 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
371 |
+
wanted_params = len(frozen_param_shapes)
|
372 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
373 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
374 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
375 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
376 |
+
|
377 |
+
total_params = 0
|
378 |
+
total_numel = 0
|
379 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
380 |
+
total_params += 1
|
381 |
+
unpartitioned_numel = shape.numel()
|
382 |
+
total_numel += unpartitioned_numel
|
383 |
+
|
384 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
385 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
386 |
+
|
387 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
388 |
+
|
389 |
+
if debug:
|
390 |
+
print(
|
391 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
392 |
+
)
|
393 |
+
|
394 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
395 |
+
|
396 |
+
|
397 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
398 |
+
param_shapes = zero_model_states[0].param_shapes
|
399 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
400 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
401 |
+
# param, re-consolidating each param, while dealing with padding if any
|
402 |
+
|
403 |
+
# merge list of dicts, preserving order
|
404 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
405 |
+
|
406 |
+
if debug:
|
407 |
+
for i in range(world_size):
|
408 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
409 |
+
|
410 |
+
wanted_params = len(param_shapes)
|
411 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
412 |
+
# not asserting if there is a mismatch due to possible padding
|
413 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
414 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
415 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
416 |
+
|
417 |
+
# params
|
418 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
419 |
+
# out-of-core computing solution
|
420 |
+
offset = 0
|
421 |
+
total_numel = 0
|
422 |
+
total_params = 0
|
423 |
+
for name, shape in param_shapes.items():
|
424 |
+
|
425 |
+
unpartitioned_numel = shape.numel()
|
426 |
+
total_numel += unpartitioned_numel
|
427 |
+
total_params += 1
|
428 |
+
|
429 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
430 |
+
|
431 |
+
if debug:
|
432 |
+
print(
|
433 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
434 |
+
)
|
435 |
+
|
436 |
+
# XXX: memory usage doubles here
|
437 |
+
state_dict[name] = torch.cat(
|
438 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
439 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
440 |
+
offset += partitioned_numel
|
441 |
+
|
442 |
+
offset *= world_size
|
443 |
+
|
444 |
+
# Sanity check
|
445 |
+
if offset != avail_numel:
|
446 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
447 |
+
|
448 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
449 |
+
|
450 |
+
|
451 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
452 |
+
exclude_frozen_parameters):
|
453 |
+
state_dict = OrderedDict()
|
454 |
+
|
455 |
+
# buffers
|
456 |
+
buffers = zero_model_states[0].buffers
|
457 |
+
state_dict.update(buffers)
|
458 |
+
if debug:
|
459 |
+
print(f"added {len(buffers)} buffers")
|
460 |
+
|
461 |
+
if not exclude_frozen_parameters:
|
462 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
463 |
+
|
464 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
465 |
+
|
466 |
+
# recover shared parameters
|
467 |
+
for pair in zero_model_states[0].shared_params:
|
468 |
+
if pair[1] in state_dict:
|
469 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
470 |
+
|
471 |
+
return state_dict
|
472 |
+
|
473 |
+
|
474 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
|
475 |
+
"""
|
476 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
477 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
478 |
+
via a model hub.
|
479 |
+
|
480 |
+
Args:
|
481 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
482 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
483 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
484 |
+
|
485 |
+
Returns:
|
486 |
+
- pytorch ``state_dict``
|
487 |
+
|
488 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
489 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
490 |
+
the checkpoint.
|
491 |
+
|
492 |
+
A typical usage might be ::
|
493 |
+
|
494 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
495 |
+
# do the training and checkpoint saving
|
496 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
497 |
+
model = model.cpu() # move to cpu
|
498 |
+
model.load_state_dict(state_dict)
|
499 |
+
# submit to model hub or save the model to share with others
|
500 |
+
|
501 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
502 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
503 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
504 |
+
|
505 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
506 |
+
|
507 |
+
"""
|
508 |
+
if tag is None:
|
509 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
510 |
+
if os.path.isfile(latest_path):
|
511 |
+
with open(latest_path, 'r') as fd:
|
512 |
+
tag = fd.read().strip()
|
513 |
+
else:
|
514 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
515 |
+
|
516 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
517 |
+
|
518 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
519 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
520 |
+
|
521 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
522 |
+
|
523 |
+
|
524 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
|
525 |
+
"""
|
526 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
527 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
528 |
+
|
529 |
+
Args:
|
530 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
531 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
532 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
533 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
534 |
+
"""
|
535 |
+
|
536 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
|
537 |
+
print(f"Saving fp32 state dict to {output_file}")
|
538 |
+
torch.save(state_dict, output_file)
|
539 |
+
|
540 |
+
|
541 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
542 |
+
"""
|
543 |
+
1. Put the provided model to cpu
|
544 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
545 |
+
3. Load it into the provided model
|
546 |
+
|
547 |
+
Args:
|
548 |
+
- ``model``: the model object to update
|
549 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
550 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
551 |
+
|
552 |
+
Returns:
|
553 |
+
- ``model`: modified model
|
554 |
+
|
555 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
556 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
557 |
+
conveniently placed for you in the checkpoint folder.
|
558 |
+
|
559 |
+
A typical usage might be ::
|
560 |
+
|
561 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
562 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
563 |
+
# submit to model hub or save the model to share with others
|
564 |
+
|
565 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
566 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
567 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
568 |
+
|
569 |
+
"""
|
570 |
+
logger.info(f"Extracting fp32 weights")
|
571 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
572 |
+
|
573 |
+
logger.info(f"Overwriting model with fp32 weights")
|
574 |
+
model = model.cpu()
|
575 |
+
model.load_state_dict(state_dict, strict=False)
|
576 |
+
|
577 |
+
return model
|
578 |
+
|
579 |
+
|
580 |
+
if __name__ == "__main__":
|
581 |
+
|
582 |
+
parser = argparse.ArgumentParser()
|
583 |
+
parser.add_argument("checkpoint_dir",
|
584 |
+
type=str,
|
585 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
586 |
+
parser.add_argument(
|
587 |
+
"output_file",
|
588 |
+
type=str,
|
589 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
590 |
+
parser.add_argument("-t",
|
591 |
+
"--tag",
|
592 |
+
type=str,
|
593 |
+
default=None,
|
594 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
595 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
596 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
597 |
+
args = parser.parse_args()
|
598 |
+
|
599 |
+
debug = args.debug
|
600 |
+
|
601 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
602 |
+
args.output_file,
|
603 |
+
tag=args.tag,
|
604 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|