|
""" |
|
inference_safetensors.py |
|
|
|
Defines the architecture of the fine-tuned embedding model used for Off-Topic classification. |
|
""" |
|
import json |
|
import torch |
|
import sys |
|
import torch.nn as nn |
|
|
|
from huggingface_hub import hf_hub_download |
|
from safetensors.torch import load_file |
|
from transformers import AutoTokenizer, AutoModel |
|
|
|
class CrossEncoderWithMLP(nn.Module): |
|
def __init__(self, base_model, num_labels=2): |
|
super(CrossEncoderWithMLP, self).__init__() |
|
|
|
|
|
self.base_model = base_model |
|
|
|
hidden_size = base_model.config.hidden_size |
|
|
|
self.mlp = nn.Sequential( |
|
nn.Linear(hidden_size, hidden_size // 2), |
|
nn.ReLU(), |
|
nn.Linear(hidden_size // 2, hidden_size // 4), |
|
nn.ReLU() |
|
) |
|
|
|
self.classifier = nn.Linear(hidden_size // 4, num_labels) |
|
|
|
def forward(self, input_ids, attention_mask): |
|
|
|
outputs = self.base_model(input_ids, attention_mask) |
|
pooled_output = outputs.pooler_output |
|
|
|
mlp_output = self.mlp(pooled_output) |
|
|
|
logits = self.classifier(mlp_output) |
|
return logits |
|
|
|
|
|
repo_path = "govtech/jina-embeddings-v2-small-en-off-topic" |
|
|
|
config_path = "config.json" |
|
|
|
with open(config_path, 'r') as f: |
|
config = json.load(f) |
|
|
|
def predict(sentence1, sentence2): |
|
""" |
|
Predicts the label for a pair of sentences using a fine-tuned model with SafeTensors weights. |
|
|
|
Args: |
|
- sentence1 (str): The first input sentence. |
|
- sentence2 (str): The second input sentence. |
|
|
|
Returns: |
|
tuple: |
|
- predicted_label (int): The predicted label (e.g., 0 or 1). |
|
- probabilities (numpy.ndarray): The probabilities for each class. |
|
""" |
|
|
|
model_name = config['classifier']['embedding']['model_name'] |
|
max_length = config['classifier']['embedding']['max_length'] |
|
model_weights_fp = config['classifier']['embedding']['model_weights_fp'] |
|
|
|
|
|
device = torch.device("cuda") if torch.cuda.is_available() else "cpu" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
base_model = AutoModel.from_pretrained(model_name) |
|
model = CrossEncoderWithMLP(base_model, num_labels=2) |
|
|
|
|
|
weights = load_file(model_weights_fp) |
|
model.load_state_dict(weights) |
|
model.to(device) |
|
model.eval() |
|
|
|
|
|
encoding = tokenizer( |
|
sentence1, sentence2, |
|
return_tensors="pt", |
|
truncation=True, |
|
padding="max_length", |
|
max_length=max_length, |
|
return_token_type_ids=False |
|
) |
|
input_ids = encoding["input_ids"].to(device) |
|
attention_mask = encoding["attention_mask"].to(device) |
|
|
|
|
|
with torch.no_grad(): |
|
outputs = model(input_ids=input_ids, attention_mask=attention_mask) |
|
probabilities = torch.softmax(outputs, dim=1) |
|
predicted_label = torch.argmax(probabilities, dim=1).item() |
|
|
|
return predicted_label, probabilities.cpu().numpy() |
|
|
|
if __name__ == "__main__": |
|
|
|
input_data = sys.argv[1] |
|
sentence_pairs = json.loads(input_data) |
|
|
|
|
|
if not all(isinstance(pair[0], str) and isinstance(pair[1], str) for pair in sentence_pairs): |
|
raise ValueError("Each pair must contain two strings.") |
|
|
|
for idx, (sentence1, sentence2) in enumerate(sentence_pairs): |
|
|
|
|
|
predicted_label, probabilities = predict(sentence1, sentence2) |
|
|
|
|
|
print(f"Pair {idx + 1}:") |
|
print(f" Sentence 1: {sentence1}") |
|
print(f" Sentence 2: {sentence2}") |
|
print(f" Predicted Label: {predicted_label}") |
|
print(f" Probabilities: {probabilities}") |
|
print('-' * 50) |
|
|