File size: 820 Bytes
887486f 8707caf e3464c0 7fd60cb e3464c0 887486f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 |
---
license: apache-2.0
---
#### Quantization config
```
"zero_point": true,
"q_group_size": 128,
"w_bit": 4,
"version": "GEMM"
```
#### Script to AWQ quantization
```
from awq import AutoAWQForCausalLM
from transformers import AutoTokenizer
model_path = 'PATH_TO Poro-34B'
quant_path = 'Poro-34B-AWQ'
quant_config = { "zero_point": True, "q_group_size": 128, "w_bit": 4, "version": "GEMM" }
# Load model
model = AutoAWQForCausalLM.from_pretrained(model_path, safetensors=True)
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
# Quantize
model.quantize(tokenizer, quant_config=quant_config)
# Save quantized model
model.save_quantized(quant_path)
tokenizer.save_pretrained(quant_path)
```
#### Work supported by https://datacrunch.io/
##### Quantized by: gradjitta |