Update README.md
Browse files
README.md
CHANGED
@@ -1,10 +1,12 @@
|
|
1 |
---
|
2 |
license: cc-by-nc-4.0
|
|
|
|
|
3 |
---
|
4 |
|
5 |
# Model Card for Spivavtor-Large
|
6 |
|
7 |
-
This model was obtained by fine-tuning the corresponding `bigscience/mt0-large` model on the Spivavtor dataset. All details of the dataset and fine tuning process can be found in our paper
|
8 |
|
9 |
**Paper:** Spivavtor: An Instruction Tuned Ukrainian Text Editing Model
|
10 |
|
@@ -18,7 +20,7 @@ This model was obtained by fine-tuning the corresponding `bigscience/mt0-large`
|
|
18 |
- **Finetuned from model:** bigscience/mt0-large
|
19 |
|
20 |
## How to use
|
21 |
-
We make
|
22 |
|
23 |
<table>
|
24 |
<tr>
|
@@ -29,12 +31,12 @@ We make available the following models presented in our paper.
|
|
29 |
<tr>
|
30 |
<td>Spivavtor-large</td>
|
31 |
<td>1.2B</td>
|
32 |
-
<td>
|
33 |
</tr>
|
34 |
<tr>
|
35 |
<td>Spivavtor-xxl</td>
|
36 |
<td>11B</td>
|
37 |
-
<td>
|
38 |
</tr>
|
39 |
</table>
|
40 |
|
@@ -45,8 +47,9 @@ tokenizer = AutoTokenizer.from_pretrained("grammarly/spivavtor-large")
|
|
45 |
model = AutoModelForSeq2SeqLM.from_pretrained("grammarly/spivavtor-large")
|
46 |
|
47 |
input_text = 'Виправте граматику в цьому реченнi: Дякую за iнформацiю! ми з Надiєю саме вийшли з дому'
|
|
|
48 |
|
49 |
-
|
50 |
-
|
51 |
output_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
52 |
```
|
|
|
1 |
---
|
2 |
license: cc-by-nc-4.0
|
3 |
+
language:
|
4 |
+
- uk
|
5 |
---
|
6 |
|
7 |
# Model Card for Spivavtor-Large
|
8 |
|
9 |
+
This model was obtained by fine-tuning the corresponding `bigscience/mt0-large` model on the Spivavtor dataset. All details of the dataset and fine tuning process can be found in our paper.
|
10 |
|
11 |
**Paper:** Spivavtor: An Instruction Tuned Ukrainian Text Editing Model
|
12 |
|
|
|
20 |
- **Finetuned from model:** bigscience/mt0-large
|
21 |
|
22 |
## How to use
|
23 |
+
We make the following models available from our paper.
|
24 |
|
25 |
<table>
|
26 |
<tr>
|
|
|
31 |
<tr>
|
32 |
<td>Spivavtor-large</td>
|
33 |
<td>1.2B</td>
|
34 |
+
<td>SPIVAVTOR-MT0-LARGE</td>
|
35 |
</tr>
|
36 |
<tr>
|
37 |
<td>Spivavtor-xxl</td>
|
38 |
<td>11B</td>
|
39 |
+
<td>SPIVAVTOR-AYA-101</td>
|
40 |
</tr>
|
41 |
</table>
|
42 |
|
|
|
47 |
model = AutoModelForSeq2SeqLM.from_pretrained("grammarly/spivavtor-large")
|
48 |
|
49 |
input_text = 'Виправте граматику в цьому реченнi: Дякую за iнформацiю! ми з Надiєю саме вийшли з дому'
|
50 |
+
# English translation of text: "Paraphrase the sentence: What is the greatest compliment that you ever received from anyone?"
|
51 |
|
52 |
+
inputs = tokenizer.encode(input_text, return_tensors="pt")
|
53 |
+
output = model.generate(inputs, max_length=256)
|
54 |
output_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
55 |
```
|