add custom handler
Browse files- handler.py +37 -0
handler.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, List, Any
|
2 |
+
from transformers import CLIPTokenizer, CLIPModel
|
3 |
+
import numpy as np
|
4 |
+
import os
|
5 |
+
import torch
|
6 |
+
|
7 |
+
|
8 |
+
class EndpointHandler:
|
9 |
+
def __init__(self, path="."):
|
10 |
+
# load the model
|
11 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
12 |
+
self.model = CLIPModel.from_pretrained(path).to(self.device).eval()
|
13 |
+
self.tokenizer = CLIPTokenizer.from_pretrained(path)
|
14 |
+
|
15 |
+
def __call__(self, data: Dict[str, Any]) -> List[float]:
|
16 |
+
"""
|
17 |
+
data args:
|
18 |
+
inputs (:obj: `str` | `PIL.Image` | `np.array`)
|
19 |
+
kwargs
|
20 |
+
Return:
|
21 |
+
A :obj:`list` | `dict`: will be serialized and returned
|
22 |
+
"""
|
23 |
+
# compute the embedding of the input
|
24 |
+
query = data["inputs"]
|
25 |
+
inputs = self.tokenizer(query, padding=True, return_tensors="pt").to(
|
26 |
+
self.device
|
27 |
+
)
|
28 |
+
with torch.no_grad():
|
29 |
+
text_features = self.model.get_text_features(**inputs)
|
30 |
+
|
31 |
+
text_features = text_features.cpu().detach().numpy()
|
32 |
+
input_embedding = text_features[0]
|
33 |
+
|
34 |
+
# normalize the embedding
|
35 |
+
input_embedding /= np.linalg.norm(input_embedding)
|
36 |
+
|
37 |
+
return input_embedding.tolist()
|