File size: 5,099 Bytes
7c0de89 c736a1b 7c0de89 885c200 7c0de89 c736a1b 7c0de89 885c200 7c0de89 4009363 e64a221 7c0de89 4009363 7c0de89 4009363 7c0de89 4009363 7c0de89 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- common_voice_8_0
metrics:
- wer
model-index:
- name: wav2vec2-large-xls-r-1b-frisian-cv-8-10h
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: common_voice_8_0
type: common_voice_8_0
config: fy-NL
split: validation
args: fy-NL
metrics:
- name: Wer
type: wer
value: 0.09612912441079846
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: common_voice_8_0
type: common_voice_8_0
config: fy-NL
split: test
args: fy-NL
metrics:
- name: Wer
type: wer
value: 0.08830755889579418
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xls-r-1b-frisian-cv-8-10h
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the common_voice_8_0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1207
- Wer: 0.0961
And on the test set:
- Wer: 0.0883
## Model description
This model has been developed for my Master's thesis in "Voice Technology" at Rijksuniversiteit Groningen - Campus Fryslân. It corresponds to experiment 3 where
I use as training set 10 hours of Frisian speech randomly selected from all validated data except the test and evaluation sets.
## Intended uses & limitations
The intended use is for recognizing Frisian speech.
Limitations include no LM rescoring and using version 8.0 of Common Voice instead of 13.0.
## Training and evaluation data
The evaluation split used is the one available in the Common Voice 8.0 Frisian subset. The train split is 10 hours of Frisian randomly selected from validated data except for the recordings from test and evaluation splits.
## Training procedure
The script used for training this model can be found in this GitHub repository: [link](https://github.com/greenw0lf/MSc-VT-Thesis/).
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 5.6342 | 1.32 | 300 | 2.9760 | 1.0 |
| 2.2716 | 2.63 | 600 | 0.6877 | 0.6024 |
| 1.1303 | 3.95 | 900 | 0.3522 | 0.3450 |
| 0.9038 | 5.26 | 1200 | 0.2714 | 0.2603 |
| 0.846 | 6.58 | 1500 | 0.2143 | 0.2036 |
| 0.8044 | 7.89 | 1800 | 0.1829 | 0.1788 |
| 0.7069 | 9.21 | 2100 | 0.1751 | 0.1667 |
| 0.6995 | 10.53 | 2400 | 0.1741 | 0.1727 |
| 0.7115 | 11.84 | 2700 | 0.1591 | 0.1486 |
| 0.677 | 13.16 | 3000 | 0.1636 | 0.1459 |
| 0.6032 | 14.47 | 3300 | 0.1535 | 0.1439 |
| 0.6218 | 15.79 | 3600 | 0.1427 | 0.1406 |
| 0.6519 | 17.11 | 3900 | 0.1498 | 0.1488 |
| 0.5739 | 18.42 | 4200 | 0.1438 | 0.1319 |
| 0.567 | 19.74 | 4500 | 0.1379 | 0.1322 |
| 0.4982 | 21.05 | 4800 | 0.1315 | 0.1237 |
| 0.5825 | 22.37 | 5100 | 0.1349 | 0.1252 |
| 0.5085 | 23.68 | 5400 | 0.1297 | 0.1233 |
| 0.4946 | 25.0 | 5700 | 0.1343 | 0.1127 |
| 0.5677 | 26.32 | 6000 | 0.1323 | 0.1228 |
| 0.4858 | 27.63 | 6300 | 0.1292 | 0.1098 |
| 0.4709 | 28.95 | 6600 | 0.1267 | 0.1204 |
| 0.3241 | 30.26 | 6900 | 0.1315 | 0.1274 |
| 0.2796 | 31.58 | 7200 | 0.1315 | 0.1202 |
| 0.3171 | 32.89 | 7500 | 0.1315 | 0.1200 |
| 0.2591 | 34.21 | 7800 | 0.1322 | 0.1106 |
| 0.2716 | 35.53 | 8100 | 0.1233 | 0.1030 |
| 0.2446 | 36.84 | 8400 | 0.1273 | 0.1087 |
| 0.2377 | 38.16 | 8700 | 0.1243 | 0.1101 |
| 0.2183 | 39.47 | 9000 | 0.1230 | 0.1116 |
| 0.2059 | 40.79 | 9300 | 0.1240 | 0.1001 |
| 0.1916 | 42.11 | 9600 | 0.1223 | 0.1003 |
| 0.196 | 43.42 | 9900 | 0.1246 | 0.0965 |
| 0.1969 | 44.74 | 10200 | 0.1222 | 0.1038 |
| 0.1951 | 46.05 | 10500 | 0.1208 | 0.1003 |
| 0.1809 | 47.37 | 10800 | 0.1213 | 0.1003 |
| 0.1793 | 48.68 | 11100 | 0.1202 | 0.0959 |
| 0.1837 | 50.0 | 11400 | 0.1207 | 0.0961 |
### Framework versions
- Transformers 4.28.1
- Pytorch 2.0.0+cu117
- Datasets 2.11.0
- Tokenizers 0.13.3
|