greenw0lf commited on
Commit
d429467
1 Parent(s): f37ad0a

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +93 -0
README.md ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - common_voice_8_0
7
+ metrics:
8
+ - wer
9
+ model-index:
10
+ - name: wav2vec2-large-xls-r-1b-frisian-cv-8-1h
11
+ results:
12
+ - task:
13
+ name: Automatic Speech Recognition
14
+ type: automatic-speech-recognition
15
+ dataset:
16
+ name: common_voice_8_0
17
+ type: common_voice_8_0
18
+ config: fy-NL
19
+ split: validation
20
+ args: fy-NL
21
+ metrics:
22
+ - name: Wer
23
+ type: wer
24
+ value: 0.23732323953720896
25
+ ---
26
+
27
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
28
+ should probably proofread and complete it, then remove this comment. -->
29
+
30
+ # wav2vec2-large-xls-r-1b-frisian-cv-8-1h
31
+
32
+ This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the common_voice_8_0 dataset.
33
+ It achieves the following results on the evaluation set:
34
+ - Loss: 0.4120
35
+ - Wer: 0.2373
36
+
37
+ ## Model description
38
+
39
+ More information needed
40
+
41
+ ## Intended uses & limitations
42
+
43
+ More information needed
44
+
45
+ ## Training and evaluation data
46
+
47
+ More information needed
48
+
49
+ ## Training procedure
50
+
51
+ ### Training hyperparameters
52
+
53
+ The following hyperparameters were used during training:
54
+ - learning_rate: 6e-05
55
+ - train_batch_size: 32
56
+ - eval_batch_size: 8
57
+ - seed: 42
58
+ - optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08
59
+ - lr_scheduler_type: linear
60
+ - lr_scheduler_warmup_ratio: 0.1
61
+ - num_epochs: 80
62
+ - mixed_precision_training: Native AMP
63
+
64
+ ### Training results
65
+
66
+ | Training Loss | Epoch | Step | Validation Loss | Wer |
67
+ |:-------------:|:-----:|:----:|:---------------:|:------:|
68
+ | 6.2987 | 4.35 | 100 | 3.0210 | 1.0 |
69
+ | 3.1424 | 8.7 | 200 | 2.9611 | 1.0 |
70
+ | 2.6299 | 13.04 | 300 | 0.9929 | 0.8377 |
71
+ | 1.3134 | 17.39 | 400 | 0.5679 | 0.5264 |
72
+ | 0.9747 | 21.74 | 500 | 0.4516 | 0.3764 |
73
+ | 0.8755 | 26.09 | 600 | 0.4515 | 0.3403 |
74
+ | 0.7227 | 30.43 | 700 | 0.4169 | 0.3211 |
75
+ | 0.6634 | 34.78 | 800 | 0.4159 | 0.2962 |
76
+ | 0.5568 | 39.13 | 900 | 0.4081 | 0.2795 |
77
+ | 0.7943 | 43.48 | 1000 | 0.4090 | 0.2709 |
78
+ | 0.5537 | 47.83 | 1100 | 0.4239 | 0.2649 |
79
+ | 0.5596 | 52.17 | 1200 | 0.4029 | 0.2561 |
80
+ | 0.5523 | 56.52 | 1300 | 0.4073 | 0.2524 |
81
+ | 0.4579 | 60.87 | 1400 | 0.4098 | 0.2470 |
82
+ | 0.6477 | 65.22 | 1500 | 0.4099 | 0.2446 |
83
+ | 0.4957 | 69.57 | 1600 | 0.4167 | 0.2475 |
84
+ | 0.3246 | 73.91 | 1700 | 0.4146 | 0.2389 |
85
+ | 0.3937 | 78.26 | 1800 | 0.4120 | 0.2373 |
86
+
87
+
88
+ ### Framework versions
89
+
90
+ - Transformers 4.28.1
91
+ - Pytorch 2.0.0+cu117
92
+ - Datasets 2.11.0
93
+ - Tokenizers 0.13.3