update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- common_voice_8_0
|
7 |
+
metrics:
|
8 |
+
- wer
|
9 |
+
model-index:
|
10 |
+
- name: wav2vec2-large-xls-r-1b-frisian-cv-8-1h
|
11 |
+
results:
|
12 |
+
- task:
|
13 |
+
name: Automatic Speech Recognition
|
14 |
+
type: automatic-speech-recognition
|
15 |
+
dataset:
|
16 |
+
name: common_voice_8_0
|
17 |
+
type: common_voice_8_0
|
18 |
+
config: fy-NL
|
19 |
+
split: validation
|
20 |
+
args: fy-NL
|
21 |
+
metrics:
|
22 |
+
- name: Wer
|
23 |
+
type: wer
|
24 |
+
value: 0.23732323953720896
|
25 |
+
---
|
26 |
+
|
27 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
28 |
+
should probably proofread and complete it, then remove this comment. -->
|
29 |
+
|
30 |
+
# wav2vec2-large-xls-r-1b-frisian-cv-8-1h
|
31 |
+
|
32 |
+
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the common_voice_8_0 dataset.
|
33 |
+
It achieves the following results on the evaluation set:
|
34 |
+
- Loss: 0.4120
|
35 |
+
- Wer: 0.2373
|
36 |
+
|
37 |
+
## Model description
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Intended uses & limitations
|
42 |
+
|
43 |
+
More information needed
|
44 |
+
|
45 |
+
## Training and evaluation data
|
46 |
+
|
47 |
+
More information needed
|
48 |
+
|
49 |
+
## Training procedure
|
50 |
+
|
51 |
+
### Training hyperparameters
|
52 |
+
|
53 |
+
The following hyperparameters were used during training:
|
54 |
+
- learning_rate: 6e-05
|
55 |
+
- train_batch_size: 32
|
56 |
+
- eval_batch_size: 8
|
57 |
+
- seed: 42
|
58 |
+
- optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08
|
59 |
+
- lr_scheduler_type: linear
|
60 |
+
- lr_scheduler_warmup_ratio: 0.1
|
61 |
+
- num_epochs: 80
|
62 |
+
- mixed_precision_training: Native AMP
|
63 |
+
|
64 |
+
### Training results
|
65 |
+
|
66 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
67 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|
|
68 |
+
| 6.2987 | 4.35 | 100 | 3.0210 | 1.0 |
|
69 |
+
| 3.1424 | 8.7 | 200 | 2.9611 | 1.0 |
|
70 |
+
| 2.6299 | 13.04 | 300 | 0.9929 | 0.8377 |
|
71 |
+
| 1.3134 | 17.39 | 400 | 0.5679 | 0.5264 |
|
72 |
+
| 0.9747 | 21.74 | 500 | 0.4516 | 0.3764 |
|
73 |
+
| 0.8755 | 26.09 | 600 | 0.4515 | 0.3403 |
|
74 |
+
| 0.7227 | 30.43 | 700 | 0.4169 | 0.3211 |
|
75 |
+
| 0.6634 | 34.78 | 800 | 0.4159 | 0.2962 |
|
76 |
+
| 0.5568 | 39.13 | 900 | 0.4081 | 0.2795 |
|
77 |
+
| 0.7943 | 43.48 | 1000 | 0.4090 | 0.2709 |
|
78 |
+
| 0.5537 | 47.83 | 1100 | 0.4239 | 0.2649 |
|
79 |
+
| 0.5596 | 52.17 | 1200 | 0.4029 | 0.2561 |
|
80 |
+
| 0.5523 | 56.52 | 1300 | 0.4073 | 0.2524 |
|
81 |
+
| 0.4579 | 60.87 | 1400 | 0.4098 | 0.2470 |
|
82 |
+
| 0.6477 | 65.22 | 1500 | 0.4099 | 0.2446 |
|
83 |
+
| 0.4957 | 69.57 | 1600 | 0.4167 | 0.2475 |
|
84 |
+
| 0.3246 | 73.91 | 1700 | 0.4146 | 0.2389 |
|
85 |
+
| 0.3937 | 78.26 | 1800 | 0.4120 | 0.2373 |
|
86 |
+
|
87 |
+
|
88 |
+
### Framework versions
|
89 |
+
|
90 |
+
- Transformers 4.28.1
|
91 |
+
- Pytorch 2.0.0+cu117
|
92 |
+
- Datasets 2.11.0
|
93 |
+
- Tokenizers 0.13.3
|