update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,157 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- common_voice_8_0
|
7 |
+
metrics:
|
8 |
+
- wer
|
9 |
+
model-index:
|
10 |
+
- name: wav2vec2-large-xls-r-1b-frisian-cv-8-large-train
|
11 |
+
results:
|
12 |
+
- task:
|
13 |
+
name: Automatic Speech Recognition
|
14 |
+
type: automatic-speech-recognition
|
15 |
+
dataset:
|
16 |
+
name: common_voice_8_0
|
17 |
+
type: common_voice_8_0
|
18 |
+
config: fy-NL
|
19 |
+
split: validation
|
20 |
+
args: fy-NL
|
21 |
+
metrics:
|
22 |
+
- name: Wer
|
23 |
+
type: wer
|
24 |
+
value: 0.04206541922582488
|
25 |
+
---
|
26 |
+
|
27 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
28 |
+
should probably proofread and complete it, then remove this comment. -->
|
29 |
+
|
30 |
+
# wav2vec2-large-xls-r-1b-frisian-cv-8-large-train
|
31 |
+
|
32 |
+
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the common_voice_8_0 dataset.
|
33 |
+
It achieves the following results on the evaluation set:
|
34 |
+
- Loss: 0.0444
|
35 |
+
- Wer: 0.0421
|
36 |
+
|
37 |
+
## Model description
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Intended uses & limitations
|
42 |
+
|
43 |
+
More information needed
|
44 |
+
|
45 |
+
## Training and evaluation data
|
46 |
+
|
47 |
+
More information needed
|
48 |
+
|
49 |
+
## Training procedure
|
50 |
+
|
51 |
+
### Training hyperparameters
|
52 |
+
|
53 |
+
The following hyperparameters were used during training:
|
54 |
+
- learning_rate: 3e-05
|
55 |
+
- train_batch_size: 36
|
56 |
+
- eval_batch_size: 8
|
57 |
+
- seed: 42
|
58 |
+
- optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08
|
59 |
+
- lr_scheduler_type: linear
|
60 |
+
- lr_scheduler_warmup_ratio: 0.1
|
61 |
+
- num_epochs: 40
|
62 |
+
- mixed_precision_training: Native AMP
|
63 |
+
|
64 |
+
### Training results
|
65 |
+
|
66 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
67 |
+
|:-------------:|:-----:|:-----:|:---------------:|:------:|
|
68 |
+
| 7.2522 | 0.48 | 400 | 3.1028 | 1.0 |
|
69 |
+
| 3.0052 | 0.97 | 800 | 2.9334 | 1.0 |
|
70 |
+
| 2.0865 | 1.45 | 1200 | 0.7288 | 0.6646 |
|
71 |
+
| 1.1654 | 1.93 | 1600 | 0.4298 | 0.4196 |
|
72 |
+
| 0.9665 | 2.41 | 2000 | 0.3134 | 0.3162 |
|
73 |
+
| 0.7891 | 2.9 | 2400 | 0.2378 | 0.2587 |
|
74 |
+
| 0.8366 | 3.38 | 2800 | 0.1896 | 0.2016 |
|
75 |
+
| 0.8606 | 3.86 | 3200 | 0.1647 | 0.1903 |
|
76 |
+
| 0.7536 | 4.34 | 3600 | 0.1486 | 0.1573 |
|
77 |
+
| 0.632 | 4.83 | 4000 | 0.1341 | 0.1450 |
|
78 |
+
| 0.5198 | 5.31 | 4400 | 0.1223 | 0.1415 |
|
79 |
+
| 0.4998 | 5.79 | 4800 | 0.1155 | 0.1388 |
|
80 |
+
| 0.4273 | 6.27 | 5200 | 0.1132 | 0.1302 |
|
81 |
+
| 0.3982 | 6.76 | 5600 | 0.1036 | 0.1102 |
|
82 |
+
| 0.3964 | 7.24 | 6000 | 0.0988 | 0.1209 |
|
83 |
+
| 0.3848 | 7.72 | 6400 | 0.0995 | 0.0985 |
|
84 |
+
| 0.3702 | 8.2 | 6800 | 0.0969 | 0.0945 |
|
85 |
+
| 0.3612 | 8.69 | 7200 | 0.0899 | 0.0967 |
|
86 |
+
| 0.3518 | 9.17 | 7600 | 0.0856 | 0.1061 |
|
87 |
+
| 0.3371 | 9.65 | 8000 | 0.0902 | 0.0875 |
|
88 |
+
| 0.3295 | 10.13 | 8400 | 0.0819 | 0.0914 |
|
89 |
+
| 0.3157 | 10.62 | 8800 | 0.0785 | 0.0937 |
|
90 |
+
| 0.3025 | 11.1 | 9200 | 0.0782 | 0.0804 |
|
91 |
+
| 0.3092 | 11.58 | 9600 | 0.0758 | 0.0845 |
|
92 |
+
| 0.301 | 12.06 | 10000 | 0.0775 | 0.0847 |
|
93 |
+
| 0.3016 | 12.55 | 10400 | 0.0730 | 0.0776 |
|
94 |
+
| 0.2892 | 13.03 | 10800 | 0.0719 | 0.0735 |
|
95 |
+
| 0.283 | 13.51 | 11200 | 0.0728 | 0.0727 |
|
96 |
+
| 0.2806 | 13.99 | 11600 | 0.0694 | 0.0710 |
|
97 |
+
| 0.2639 | 14.48 | 12000 | 0.0705 | 0.0703 |
|
98 |
+
| 0.2606 | 14.96 | 12400 | 0.0652 | 0.0668 |
|
99 |
+
| 0.2595 | 15.44 | 12800 | 0.0638 | 0.0691 |
|
100 |
+
| 0.2611 | 15.92 | 13200 | 0.0636 | 0.0713 |
|
101 |
+
| 0.246 | 16.41 | 13600 | 0.0632 | 0.0653 |
|
102 |
+
| 0.2544 | 16.89 | 14000 | 0.0605 | 0.0638 |
|
103 |
+
| 0.2509 | 17.37 | 14400 | 0.0640 | 0.0646 |
|
104 |
+
| 0.2381 | 17.85 | 14800 | 0.0604 | 0.0663 |
|
105 |
+
| 0.2336 | 18.34 | 15200 | 0.0590 | 0.0628 |
|
106 |
+
| 0.2285 | 18.82 | 15600 | 0.0580 | 0.0612 |
|
107 |
+
| 0.2362 | 19.3 | 16000 | 0.0655 | 0.0638 |
|
108 |
+
| 0.2279 | 19.78 | 16400 | 0.0611 | 0.0669 |
|
109 |
+
| 0.2228 | 20.27 | 16800 | 0.0606 | 0.0621 |
|
110 |
+
| 0.2242 | 20.75 | 17200 | 0.0560 | 0.0575 |
|
111 |
+
| 0.2053 | 21.23 | 17600 | 0.0571 | 0.0572 |
|
112 |
+
| 0.2097 | 21.71 | 18000 | 0.0557 | 0.0555 |
|
113 |
+
| 0.2072 | 22.2 | 18400 | 0.0563 | 0.0576 |
|
114 |
+
| 0.2076 | 22.68 | 18800 | 0.0532 | 0.0562 |
|
115 |
+
| 0.2026 | 23.16 | 19200 | 0.0531 | 0.0540 |
|
116 |
+
| 0.1941 | 23.64 | 19600 | 0.0535 | 0.0534 |
|
117 |
+
| 0.1983 | 24.13 | 20000 | 0.0528 | 0.0541 |
|
118 |
+
| 0.2075 | 24.61 | 20400 | 0.0536 | 0.0538 |
|
119 |
+
| 0.1937 | 25.09 | 20800 | 0.0532 | 0.0569 |
|
120 |
+
| 0.1943 | 25.57 | 21200 | 0.0511 | 0.0507 |
|
121 |
+
| 0.1844 | 26.06 | 21600 | 0.0521 | 0.0521 |
|
122 |
+
| 0.181 | 26.54 | 22000 | 0.0506 | 0.0507 |
|
123 |
+
| 0.1877 | 27.02 | 22400 | 0.0529 | 0.0510 |
|
124 |
+
| 0.1825 | 27.5 | 22800 | 0.0527 | 0.0498 |
|
125 |
+
| 0.1872 | 27.99 | 23200 | 0.0506 | 0.0485 |
|
126 |
+
| 0.1857 | 28.47 | 23600 | 0.0497 | 0.0492 |
|
127 |
+
| 0.1766 | 28.95 | 24000 | 0.0504 | 0.0488 |
|
128 |
+
| 0.1756 | 29.43 | 24400 | 0.0496 | 0.0482 |
|
129 |
+
| 0.1701 | 29.92 | 24800 | 0.0479 | 0.0479 |
|
130 |
+
| 0.1717 | 30.4 | 25200 | 0.0499 | 0.0468 |
|
131 |
+
| 0.1624 | 30.88 | 25600 | 0.0492 | 0.0466 |
|
132 |
+
| 0.1671 | 31.36 | 26000 | 0.0490 | 0.0461 |
|
133 |
+
| 0.1704 | 31.85 | 26400 | 0.0482 | 0.0452 |
|
134 |
+
| 0.1653 | 32.33 | 26800 | 0.0467 | 0.0446 |
|
135 |
+
| 0.158 | 32.81 | 27200 | 0.0465 | 0.0449 |
|
136 |
+
| 0.1599 | 33.29 | 27600 | 0.0473 | 0.0445 |
|
137 |
+
| 0.1558 | 33.78 | 28000 | 0.0475 | 0.0453 |
|
138 |
+
| 0.1556 | 34.26 | 28400 | 0.0462 | 0.0445 |
|
139 |
+
| 0.1591 | 34.74 | 28800 | 0.0464 | 0.0431 |
|
140 |
+
| 0.1544 | 35.22 | 29200 | 0.0476 | 0.0433 |
|
141 |
+
| 0.1576 | 35.71 | 29600 | 0.0466 | 0.0434 |
|
142 |
+
| 0.1507 | 36.19 | 30000 | 0.0451 | 0.0435 |
|
143 |
+
| 0.1501 | 36.67 | 30400 | 0.0453 | 0.0429 |
|
144 |
+
| 0.1482 | 37.15 | 30800 | 0.0439 | 0.0432 |
|
145 |
+
| 0.1518 | 37.64 | 31200 | 0.0446 | 0.0424 |
|
146 |
+
| 0.1454 | 38.12 | 31600 | 0.0449 | 0.0417 |
|
147 |
+
| 0.145 | 38.6 | 32000 | 0.0440 | 0.0421 |
|
148 |
+
| 0.147 | 39.08 | 32400 | 0.0441 | 0.0424 |
|
149 |
+
| 0.141 | 39.57 | 32800 | 0.0444 | 0.0421 |
|
150 |
+
|
151 |
+
|
152 |
+
### Framework versions
|
153 |
+
|
154 |
+
- Transformers 4.28.1
|
155 |
+
- Pytorch 2.0.0+cu117
|
156 |
+
- Datasets 2.11.0
|
157 |
+
- Tokenizers 0.13.3
|