File size: 8,576 Bytes
92a452a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eada0e6
 
 
 
 
 
 
 
 
 
 
 
 
92a452a
 
 
 
 
 
 
 
 
 
 
 
eada0e6
 
 
 
92a452a
 
eada0e6
 
 
92a452a
 
 
eada0e6
 
 
92a452a
 
 
eada0e6
92a452a
 
 
eada0e6
 
92a452a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- common_voice_8_0
metrics:
- wer
model-index:
- name: wav2vec2-large-xls-r-2b-frisian-cv-8
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: common_voice_8_0
      type: common_voice_8_0
      config: fy-NL
      split: validation
      args: fy-NL
    metrics:
    - name: Wer
      type: wer
      value: 0.040494215112126836
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: common_voice_8_0
      type: common_voice_8_0
      config: fy-NL
      split: test
      args: fy-NL
    metrics:
    - name: Wer
      type: wer
      value: 0.04223876282699812
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-large-xls-r-2b-frisian-cv-8

This model is a fine-tuned version of [facebook/wav2vec2-xls-r-2b](https://huggingface.co/facebook/wav2vec2-xls-r-2b) on the common_voice_8_0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0465
- Wer: 0.0405

And on the test set:

- Wer: 0.0422

## Model description

This model has been developed for my Master's thesis in "Voice Technology" at Rijksuniversiteit Groningen - Campus Fryslân. It corresponds to experiment 7 where 
I use as training set all validated data (~ 50 hours) except the test and evaluation sets (~ 4.5 hours each). 
The number of training hours adds up to 41 hours of Frisian speech. This varies from experiment 2 because I fine-tune on the 2B parameters version of XLS-R.

## Intended uses & limitations

The intended use is for recognizing Frisian speech.

Limitations include no LM rescoring and using version 8.0 of Common Voice instead of 13.0.

## Training and evaluation data

The evaluation split used is the one available in the Common Voice 8.0 Frisian subset. The train split corresponds to all of the validated data except for the recordings found in the evaluation and test splits.

## Training procedure

The script used for training this model can be found in this GitHub repository: [link](https://github.com/greenw0lf/MSc-VT-Thesis/).

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Wer    |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 6.3316        | 0.21  | 400   | 2.9773          | 1.0    |
| 2.7465        | 0.43  | 800   | 1.2564          | 0.9352 |
| 1.4576        | 0.64  | 1200  | 0.6275          | 0.5809 |
| 1.2245        | 0.86  | 1600  | 0.4438          | 0.4244 |
| 0.9928        | 1.07  | 2000  | 0.3058          | 0.3247 |
| 0.8768        | 1.29  | 2400  | 0.2656          | 0.2618 |
| 0.8686        | 1.5   | 2800  | 0.2155          | 0.2289 |
| 0.8325        | 1.72  | 3200  | 0.1924          | 0.2016 |
| 0.8495        | 1.93  | 3600  | 0.1748          | 0.1853 |
| 0.7069        | 2.14  | 4000  | 0.1792          | 0.1682 |
| 0.7381        | 2.36  | 4400  | 0.1540          | 0.1524 |
| 0.6648        | 2.57  | 4800  | 0.1397          | 0.1477 |
| 0.7471        | 2.79  | 5200  | 0.1372          | 0.1389 |
| 0.7219        | 3.0   | 5600  | 0.1296          | 0.1308 |
| 0.5894        | 3.22  | 6000  | 0.1167          | 0.1287 |
| 0.585         | 3.43  | 6400  | 0.1194          | 0.1264 |
| 0.5486        | 3.65  | 6800  | 0.1159          | 0.1248 |
| 0.5001        | 3.86  | 7200  | 0.1107          | 0.1160 |
| 0.4838        | 4.08  | 7600  | 0.1079          | 0.1212 |
| 0.4213        | 4.29  | 8000  | 0.1065          | 0.1145 |
| 0.4493        | 4.5   | 8400  | 0.0998          | 0.1098 |
| 0.4003        | 4.72  | 8800  | 0.0975          | 0.1027 |
| 0.4034        | 4.93  | 9200  | 0.0947          | 0.1023 |
| 0.3699        | 5.15  | 9600  | 0.0927          | 0.1006 |
| 0.3748        | 5.36  | 10000 | 0.0955          | 0.0994 |
| 0.3681        | 5.58  | 10400 | 0.0923          | 0.0952 |
| 0.3416        | 5.79  | 10800 | 0.0902          | 0.0968 |
| 0.3594        | 6.01  | 11200 | 0.0848          | 0.0935 |
| 0.3303        | 6.22  | 11600 | 0.0889          | 0.0921 |
| 0.3205        | 6.43  | 12000 | 0.0843          | 0.0893 |
| 0.3267        | 6.65  | 12400 | 0.0884          | 0.0882 |
| 0.33          | 6.86  | 12800 | 0.0859          | 0.0936 |
| 0.3023        | 7.08  | 13200 | 0.0830          | 0.0851 |
| 0.3057        | 7.29  | 13600 | 0.0826          | 0.0860 |
| 0.3007        | 7.51  | 14000 | 0.0841          | 0.0836 |
| 0.2981        | 7.72  | 14400 | 0.0790          | 0.0817 |
| 0.282         | 7.94  | 14800 | 0.0761          | 0.0779 |
| 0.2758        | 8.15  | 15200 | 0.0767          | 0.0776 |
| 0.275         | 8.36  | 15600 | 0.0788          | 0.0781 |
| 0.283         | 8.58  | 16000 | 0.0728          | 0.0775 |
| 0.2684        | 8.79  | 16400 | 0.0722          | 0.0742 |
| 0.2701        | 9.01  | 16800 | 0.0742          | 0.0720 |
| 0.248         | 9.22  | 17200 | 0.0711          | 0.0729 |
| 0.2467        | 9.44  | 17600 | 0.0698          | 0.0711 |
| 0.2588        | 9.65  | 18000 | 0.0688          | 0.0710 |
| 0.2566        | 9.87  | 18400 | 0.0699          | 0.0708 |
| 0.2425        | 10.08 | 18800 | 0.0699          | 0.0683 |
| 0.2292        | 10.29 | 19200 | 0.0697          | 0.0662 |
| 0.2317        | 10.51 | 19600 | 0.0670          | 0.0663 |
| 0.2381        | 10.72 | 20000 | 0.0649          | 0.0648 |
| 0.2281        | 10.94 | 20400 | 0.0619          | 0.0621 |
| 0.2329        | 11.15 | 20800 | 0.0648          | 0.0627 |
| 0.2197        | 11.37 | 21200 | 0.0630          | 0.0632 |
| 0.2406        | 11.58 | 21600 | 0.0611          | 0.0609 |
| 0.2221        | 11.8  | 22000 | 0.0621          | 0.0601 |
| 0.2316        | 12.01 | 22400 | 0.0637          | 0.0596 |
| 0.202         | 12.23 | 22800 | 0.0622          | 0.0592 |
| 0.2071        | 12.44 | 23200 | 0.0603          | 0.0589 |
| 0.2119        | 12.65 | 23600 | 0.0589          | 0.0581 |
| 0.2072        | 12.87 | 24000 | 0.0586          | 0.0588 |
| 0.1948        | 13.08 | 24400 | 0.0576          | 0.0562 |
| 0.1967        | 13.3  | 24800 | 0.0573          | 0.0543 |
| 0.1981        | 13.51 | 25200 | 0.0582          | 0.0567 |
| 0.1869        | 13.73 | 25600 | 0.0550          | 0.0533 |
| 0.1929        | 13.94 | 26000 | 0.0530          | 0.0540 |
| 0.1837        | 14.16 | 26400 | 0.0550          | 0.0519 |
| 0.1823        | 14.37 | 26800 | 0.0535          | 0.0521 |
| 0.1756        | 14.58 | 27200 | 0.0552          | 0.0515 |
| 0.1769        | 14.8  | 27600 | 0.0553          | 0.0502 |
| 0.1769        | 15.01 | 28000 | 0.0516          | 0.0493 |
| 0.1781        | 15.23 | 28400 | 0.0519          | 0.0485 |
| 0.1763        | 15.44 | 28800 | 0.0511          | 0.0482 |
| 0.1705        | 15.66 | 29200 | 0.0513          | 0.0471 |
| 0.1696        | 15.87 | 29600 | 0.0484          | 0.0467 |
| 0.1668        | 16.09 | 30000 | 0.0492          | 0.0464 |
| 0.1635        | 16.3  | 30400 | 0.0492          | 0.0470 |
| 0.1597        | 16.51 | 30800 | 0.0505          | 0.0471 |
| 0.152         | 16.73 | 31200 | 0.0495          | 0.0471 |
| 0.1589        | 16.94 | 31600 | 0.0478          | 0.0456 |
| 0.1586        | 17.16 | 32000 | 0.0490          | 0.0441 |
| 0.1516        | 17.37 | 32400 | 0.0482          | 0.0448 |
| 0.1506        | 17.59 | 32800 | 0.0485          | 0.0439 |
| 0.1513        | 17.8  | 33200 | 0.0485          | 0.0439 |
| 0.1545        | 18.02 | 33600 | 0.0479          | 0.0432 |
| 0.1472        | 18.23 | 34000 | 0.0479          | 0.0428 |
| 0.148         | 18.45 | 34400 | 0.0475          | 0.0424 |
| 0.1446        | 18.66 | 34800 | 0.0477          | 0.0420 |
| 0.1413        | 18.87 | 35200 | 0.0466          | 0.0416 |
| 0.1398        | 19.09 | 35600 | 0.0477          | 0.0407 |
| 0.1431        | 19.3  | 36000 | 0.0466          | 0.0406 |
| 0.1437        | 19.52 | 36400 | 0.0467          | 0.0401 |
| 0.1393        | 19.73 | 36800 | 0.0468          | 0.0404 |
| 0.1416        | 19.95 | 37200 | 0.0465          | 0.0405 |


### Framework versions

- Transformers 4.28.1
- Pytorch 2.0.0+cu117
- Datasets 2.11.0
- Tokenizers 0.13.3