--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: SloBertAA_Top100_WithOOC_082023_MultilingualBertBase results: [] --- # SloBertAA_Top100_WithOOC_082023_MultilingualBertBase This model is a fine-tuned version of [bert-base-multilingual-uncased](https://huggingface.co/bert-base-multilingual-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.8608 - Accuracy: 0.6898 - F1: 0.6904 - Precision: 0.6936 - Recall: 0.6898 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:------:|:---------------:|:--------:|:------:|:---------:|:------:| | 1.7313 | 1.0 | 45122 | 1.6826 | 0.5773 | 0.5766 | 0.5997 | 0.5773 | | 1.4117 | 2.0 | 90244 | 1.4419 | 0.6341 | 0.6345 | 0.6529 | 0.6341 | | 1.1573 | 3.0 | 135366 | 1.3509 | 0.6614 | 0.6620 | 0.6733 | 0.6614 | | 0.9147 | 4.0 | 180488 | 1.3583 | 0.6695 | 0.6699 | 0.6817 | 0.6695 | | 0.7452 | 5.0 | 225610 | 1.3881 | 0.6797 | 0.6800 | 0.6887 | 0.6797 | | 0.5393 | 6.0 | 270732 | 1.4650 | 0.6828 | 0.6835 | 0.6897 | 0.6828 | | 0.4207 | 7.0 | 315854 | 1.5770 | 0.6839 | 0.6840 | 0.6905 | 0.6839 | | 0.2985 | 8.0 | 360976 | 1.6813 | 0.6869 | 0.6877 | 0.6921 | 0.6869 | | 0.2029 | 9.0 | 406098 | 1.7977 | 0.6882 | 0.6886 | 0.6923 | 0.6882 | | 0.1546 | 10.0 | 451220 | 1.8608 | 0.6898 | 0.6904 | 0.6936 | 0.6898 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.8.0 - Datasets 2.10.1 - Tokenizers 0.13.2