Edit model card

SloBertAA_Top20_WithoutOOC_082023

This model is a fine-tuned version of EMBEDDIA/sloberta on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8485
  • Accuracy: 0.8909
  • F1: 0.8908
  • Precision: 0.8914
  • Recall: 0.8909

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 12
  • eval_batch_size: 12
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.5035 1.0 22717 0.4645 0.8498 0.8495 0.8603 0.8498
0.3863 2.0 45434 0.4249 0.8679 0.8680 0.8703 0.8679
0.3005 3.0 68151 0.4785 0.8695 0.8700 0.8743 0.8695
0.2094 4.0 90868 0.5345 0.8771 0.8769 0.8801 0.8771
0.1878 5.0 113585 0.6158 0.8793 0.8792 0.8817 0.8793
0.1256 6.0 136302 0.6737 0.8847 0.8847 0.8860 0.8847
0.0999 7.0 159019 0.7364 0.8855 0.8857 0.8870 0.8855
0.0633 8.0 181736 0.8041 0.8863 0.8862 0.8874 0.8863
0.0338 9.0 204453 0.8479 0.8877 0.8877 0.8891 0.8877
0.0178 10.0 227170 0.8485 0.8909 0.8908 0.8914 0.8909

Framework versions

  • Transformers 4.26.1
  • Pytorch 1.8.0
  • Datasets 2.10.1
  • Tokenizers 0.13.2
Downloads last month
11
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.