--- license: cc-by-sa-4.0 tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: SloBertAA_Top5_WithoutOOC_082023 results: [] --- # SloBertAA_Top5_WithoutOOC_082023 This model is a fine-tuned version of [EMBEDDIA/sloberta](https://huggingface.co/EMBEDDIA/sloberta) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4398 - Accuracy: 0.9478 - F1: 0.9478 - Precision: 0.9481 - Recall: 0.9478 ## Other related models Models fine-tuned on the RTV datasets: | Base model | Includes the OOC class? | 5 classes | 10 classes | 20 classes | 50 classes | 100 classes | | ------------------- | ----------------------- |:---------:|:----------:|:----------:|:----------:|:-----------:| | SloBERTa | Yes | [link](https://huggingface.co/gregorgabrovsek/SloBertAA_Top5_WithOOC_082023) | [link](https://huggingface.co/gregorgabrovsek/SloBertAA_Top10_WithOOC_082023) | [link](https://huggingface.co/gregorgabrovsek/SloBertAA_Top20_WithOOC_082023) | [link](https://huggingface.co/gregorgabrovsek/SloBertAA_Top50_WithOOC_082023) | [link](https://huggingface.co/gregorgabrovsek/SloBertAA_Top100_WithOOC_082023) | | SloBERTa | No | [link](https://huggingface.co/gregorgabrovsek/SloBertAA_Top5_WithoutOOC_082023) | [link](https://huggingface.co/gregorgabrovsek/SloBertAA_Top10_WithoutOOC_082023) | [link](https://huggingface.co/gregorgabrovsek/SloBertAA_Top20_WithoutOOC_082023) | [link](https://huggingface.co/gregorgabrovsek/SloBertAA_Top50_WithoutOOC_082023) | [link](https://huggingface.co/gregorgabrovsek/SloBertAA_Top100_WithoutOOC_082023) | | BERT Multilingual | Yes | [link](https://huggingface.co/gregorgabrovsek/SloBertAA_Top5_WithOOC_082023_MultilingualBertBase) | [link](https://huggingface.co/gregorgabrovsek/SloBertAA_Top10_WithOOC_082023_MultilingualBertBase) | [link](https://huggingface.co/gregorgabrovsek/SloBertAA_Top20_WithOOC_082023_MultilingualBertBase) | [link](https://huggingface.co/gregorgabrovsek/SloBertAA_Top50_WithOOC_082023_MultilingualBertBase) | [link](https://huggingface.co/gregorgabrovsek/SloBertAA_Top100_WithOOC_082023_MultilingualBertBase) | | BERT Multilingual | No | [link](https://huggingface.co/gregorgabrovsek/SloBertAA_Top5_WithoutOOC_082023_MultilingualBertBase) | [link](https://huggingface.co/gregorgabrovsek/SloBertAA_Top10_WithoutOOC_082023_MultilingualBertBase) | [link](https://huggingface.co/gregorgabrovsek/SloBertAA_Top20_WithoutOOC_082023_MultilingualBertBase) | [link](https://huggingface.co/gregorgabrovsek/SloBertAA_Top50_WithoutOOC_082023_MultilingualBertBase) | [link](https://huggingface.co/gregorgabrovsek/SloBertAA_Top100_WithoutOOC_082023_MultilingualBertBase) | Models fine-tuned on the IMDb datasets: | Base model | Includes the OOC class? | 5 classes | 10 classes | 25 classes | 50 classes | 100 classes | | ------------------- | ----------------------- |:---------:|:----------:|:----------:|:----------:|:-----------:| | BERT Multilingual | No | [link](https://huggingface.co/gregorgabrovsek/BERT_AA_IMDB_Top5_WithoutOOC_082023_MultilingualBertBase) |[link](https://huggingface.co/gregorgabrovsek/BERT_AA_IMDB_Top10_WithoutOOC_082023_MultilingualBertBase) |[link](https://huggingface.co/gregorgabrovsek/BERT_AA_IMDB_Top25_WithoutOOC_082023_MultilingualBertBase) |[link](https://huggingface.co/gregorgabrovsek/BERT_AA_IMDB_Top50_WithoutOOC_082023_MultilingualBertBase) |[link](https://huggingface.co/gregorgabrovsek/BERT_AA_IMDB_Top100_WithoutOOC_082023_MultilingualBertBase) | ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.2468 | 1.0 | 8757 | 0.2629 | 0.9194 | 0.9199 | 0.9226 | 0.9194 | | 0.1864 | 2.0 | 17514 | 0.2340 | 0.9375 | 0.9377 | 0.9386 | 0.9375 | | 0.1419 | 3.0 | 26271 | 0.2821 | 0.9371 | 0.9374 | 0.9389 | 0.9371 | | 0.1001 | 4.0 | 35028 | 0.3135 | 0.9408 | 0.9409 | 0.9412 | 0.9408 | | 0.0727 | 5.0 | 43785 | 0.3584 | 0.9415 | 0.9416 | 0.9423 | 0.9415 | | 0.057 | 6.0 | 52542 | 0.3552 | 0.9440 | 0.9442 | 0.9450 | 0.9440 | | 0.0332 | 7.0 | 61299 | 0.4318 | 0.9394 | 0.9396 | 0.9407 | 0.9394 | | 0.0268 | 8.0 | 70056 | 0.4376 | 0.9442 | 0.9444 | 0.9455 | 0.9442 | | 0.019 | 9.0 | 78813 | 0.4377 | 0.9444 | 0.9445 | 0.9451 | 0.9444 | | 0.0181 | 10.0 | 87570 | 0.4398 | 0.9478 | 0.9478 | 0.9481 | 0.9478 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.8.0 - Datasets 2.10.1 - Tokenizers 0.13.2