File size: 2,529 Bytes
1f01a02
 
 
 
 
3d1d4ad
1f01a02
 
 
 
 
 
 
 
 
 
 
 
3d1d4ad
1f01a02
 
 
 
 
 
 
3d1d4ad
1f01a02
 
 
 
 
 
 
3d1d4ad
1f01a02
3d1d4ad
 
1f01a02
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
---
library_name: transformers
license: apache-2.0
base_model: google/vit-large-patch16-224-in21k
tags:
- image-classification
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: vit-large-patch16-224-in21k-dungeon-geo-morphs-0-4-30Nov24-003
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: dungeon-geo-morphs
      type: imagefolder
      config: default
      split: validation
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.9589285714285715
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# vit-large-patch16-224-in21k-dungeon-geo-morphs-0-4-30Nov24-003

This model is a fine-tuned version of [google/vit-large-patch16-224-in21k](https://huggingface.co/google/vit-large-patch16-224-in21k) on the dungeon-geo-morphs dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1374
- Accuracy: 0.9589

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 40
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch   | Step | Validation Loss | Accuracy |
|:-------------:|:-------:|:----:|:---------------:|:--------:|
| 1.3682        | 3.9091  | 10   | 1.0376          | 0.825    |
| 0.5281        | 7.9091  | 20   | 0.5309          | 0.9196   |
| 0.1424        | 11.9091 | 30   | 0.2757          | 0.9375   |
| 0.033         | 15.9091 | 40   | 0.1681          | 0.9482   |
| 0.0093        | 19.9091 | 50   | 0.1374          | 0.9589   |
| 0.0046        | 23.9091 | 60   | 0.1288          | 0.9589   |
| 0.0034        | 27.9091 | 70   | 0.1221          | 0.9571   |
| 0.003         | 31.9091 | 80   | 0.1208          | 0.9571   |


### Framework versions

- Transformers 4.46.2
- Pytorch 2.5.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3