File size: 5,104 Bytes
a33ae41
 
 
 
 
 
 
 
 
 
 
18097d1
a33ae41
fc124cf
 
 
 
 
 
a33ae41
18097d1
 
 
 
 
 
 
 
a33ae41
 
 
 
 
 
 
 
 
 
 
 
 
 
2e8c95f
 
a33ae41
a894d5f
a33ae41
 
 
2e8c95f
 
 
 
 
 
 
 
 
 
 
 
a33ae41
2e8c95f
 
18097d1
2e8c95f
 
 
 
 
 
 
 
 
 
 
9df03e0
2e8c95f
 
 
 
 
 
 
a33ae41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f23a3a
a33ae41
4f23a3a
a33ae41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
from typing import Dict, List, Any
from transformers import pipeline
from PIL import Image
import requests
from transformers import AutoModelForCausalLM, LlamaTokenizer
import torch
from accelerate import (
    init_empty_weights,
    infer_auto_device_map,
    load_checkpoint_and_dispatch,
)
import os

import logging
from transformers import logging as hf_logging

logging.basicConfig(level=logging.INFO)
hf_logging.set_verbosity_debug()


def list_files(directory, depth, max_depth=5):
    # Lists all files and directories in the given directory
    for filename in os.listdir(directory):
        print(os.path.join(directory, filename))
        if not os.path.isfile(filename) and depth < max_depth:
            list_files(os.path.join(directory, filename), depth + 1, max_depth)


class EndpointHandler:
    def __init__(self, path=""):
        # Preload all the elements you are going to need at inference.

        # self.pipeline = pipeline(
        #     "text-generation", model="THUDM/cogvlm-chat-hf", trust_remote_code=True
        # )

        # self.model = AutoModelForCausalLM.from_pretrained(
        #     "THUDM/cogvlm-chat-hf", trust_remote_code=True
        # )

        self.tokenizer = LlamaTokenizer.from_pretrained("lmsys/vicuna-7b-v1.5")

        self.model = (
            AutoModelForCausalLM.from_pretrained(
                "THUDM/cogvlm-chat-hf",
                torch_dtype=torch.bfloat16,
                low_cpu_mem_usage=True,
                trust_remote_code=True,
            )
            .to("cuda")
            .eval()
        )

        # DISTRIBUTED GPUS
        # with init_empty_weights():
        #     self.model = AutoModelForCausalLM.from_pretrained(
        #         "THUDM/cogvlm-chat-hf",
        #         torch_dtype=torch.bfloat16,
        #         low_cpu_mem_usage=True,
        #         trust_remote_code=True,
        #     )

        # # print("LISTING FILES IN ", "/root/.cache/huggingface")
        # # list_files("/root/.cache/huggingface", 0, 5)

        # device_map = infer_auto_device_map(
        #     self.model,
        #     max_memory={
        #         0: "12GiB",
        #         1: "12GiB",
        #         2: "12GiB",
        #         3: "12GiB",
        #         "cpu": "180GiB",
        #     },
        #     no_split_module_classes=["CogVLMDecoderLayer"],
        # )

        # self.model = load_checkpoint_and_dispatch(
        #     self.model,
        #     "/root/.cache/huggingface/hub/models--THUDM--cogvlm-chat-hf/snapshots/8abca878c4257412c4c38eeafaed3fe27a036730",
        #     device_map=device_map,
        #     no_split_module_classes=["CogVLMDecoderLayer"],
        # )
        # self.model = self.model.eval()
        ## DISTRIBUTED GPUS

    def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
        """
         data args:
              inputs (:obj: `str` | `PIL.Image` | `np.array`)
              kwargs
        Return:
              A :obj:`list` | `dict`: will be serialized and returned
        """

        query = data["query"]
        img_uri = data["img_uri"]

        image = Image.open(
            requests.get(
                img_uri,
                stream=True,
            ).raw
        ).convert("RGB")

        inputs = self.model.build_conversation_input_ids(
            self.tokenizer,
            query=query,
            history=[],
            images=[image],
            template_version="vqa",
        )  # vqa mode

        inputs = {
            "input_ids": inputs["input_ids"].unsqueeze(0).to("cuda"),
            "token_type_ids": inputs["token_type_ids"].unsqueeze(0).to("cuda"),
            "attention_mask": inputs["attention_mask"].unsqueeze(0).to("cuda"),
            "images": [[inputs["images"][0].to("cuda").to(torch.bfloat16)]],
        }

        gen_kwargs = {"max_length": 2048, "do_sample": False}

        with torch.no_grad():
            outputs = self.model.generate(**inputs, **gen_kwargs)
            print("outputs 1: ", outputs)
            outputs = outputs[:, inputs["input_ids"].shape[1] :]
            print("outputs 2: ", outputs)
            response = self.tokenizer.decode(outputs[0])
            return response


# query = "How many houses are there in this cartoon?"
# image = Image.open(
#     requests.get(
#         "https://github.com/THUDM/CogVLM/blob/main/examples/3.jpg?raw=true", stream=True
#     ).raw
# ).convert("RGB")
# inputs = model.build_conversation_input_ids(
#     tokenizer, query=query, history=[], images=[image], template_version="vqa"
# )  # vqa mode
# inputs = {
#     "input_ids": inputs["input_ids"].unsqueeze(0).to("cuda"),
#     "token_type_ids": inputs["token_type_ids"].unsqueeze(0).to("cuda"),
#     "attention_mask": inputs["attention_mask"].unsqueeze(0).to("cuda"),
#     "images": [[inputs["images"][0].to("cuda").to(torch.bfloat16)]],
# }
# gen_kwargs = {"max_length": 2048, "do_sample": False}

# with torch.no_grad():
#     outputs = model.generate(**inputs, **gen_kwargs)
#     outputs = outputs[:, inputs["input_ids"].shape[1] :]
#     print(tokenizer.decode(outputs[0]))