File size: 20,665 Bytes
cfa800c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
# JAX implementation of VQGAN from taming-transformers https://github.com/CompVis/taming-transformers

from functools import partial
from typing import Tuple
import math

import jax
import jax.numpy as jnp
import numpy as np
import flax.linen as nn
from flax.core.frozen_dict import FrozenDict

from transformers.modeling_flax_utils import FlaxPreTrainedModel

from .configuration_vqgan import VQGANConfig


class Upsample(nn.Module):
  in_channels: int
  with_conv: bool
  dtype: jnp.dtype = jnp.float32

  def setup(self):
    if self.with_conv:
      self.conv = nn.Conv(
          self.in_channels,
          kernel_size=(3, 3),
          strides=(1, 1),
          padding=((1, 1), (1, 1)),
          dtype=self.dtype,
      )

  def __call__(self, hidden_states):
    batch, height, width, channels = hidden_states.shape
    hidden_states = jax.image.resize(
        hidden_states,
        shape=(batch, height * 2, width * 2, channels),
        method="nearest",
    )
    if self.with_conv:
      hidden_states = self.conv(hidden_states)
    return hidden_states


class Downsample(nn.Module):
  in_channels: int
  with_conv: bool
  dtype: jnp.dtype = jnp.float32

  def setup(self):
    if self.with_conv:
      self.conv = nn.Conv(
          self.in_channels,
          kernel_size=(3, 3),
          strides=(2, 2),
          padding="VALID",
          dtype=self.dtype,
      )

  def __call__(self, hidden_states):
    if self.with_conv:
      pad = ((0, 0), (0, 1), (0, 1), (0, 0))  # pad height and width dim
      hidden_states = jnp.pad(hidden_states, pad_width=pad)
      hidden_states = self.conv(hidden_states)
    else:
      hidden_states = nn.avg_pool(hidden_states,
                                  window_shape=(2, 2),
                                  strides=(2, 2),
                                  padding="VALID")
    return hidden_states


class ResnetBlock(nn.Module):
  in_channels: int
  out_channels: int = None
  use_conv_shortcut: bool = False
  temb_channels: int = 512
  dropout_prob: float = 0.0
  dtype: jnp.dtype = jnp.float32

  def setup(self):
    self.out_channels_ = self.in_channels if self.out_channels is None else self.out_channels

    self.norm1 = nn.GroupNorm(num_groups=32, epsilon=1e-6)
    self.conv1 = nn.Conv(
        self.out_channels_,
        kernel_size=(3, 3),
        strides=(1, 1),
        padding=((1, 1), (1, 1)),
        dtype=self.dtype,
    )

    if self.temb_channels:
      self.temb_proj = nn.Dense(self.out_channels_, dtype=self.dtype)

    self.norm2 = nn.GroupNorm(num_groups=32, epsilon=1e-6)
    self.dropout = nn.Dropout(self.dropout_prob)
    self.conv2 = nn.Conv(
        self.out_channels_,
        kernel_size=(3, 3),
        strides=(1, 1),
        padding=((1, 1), (1, 1)),
        dtype=self.dtype,
    )

    if self.in_channels != self.out_channels_:
      if self.use_conv_shortcut:
        self.conv_shortcut = nn.Conv(
            self.out_channels_,
            kernel_size=(3, 3),
            strides=(1, 1),
            padding=((1, 1), (1, 1)),
            dtype=self.dtype,
        )
      else:
        self.nin_shortcut = nn.Conv(
            self.out_channels_,
            kernel_size=(1, 1),
            strides=(1, 1),
            padding="VALID",
            dtype=self.dtype,
        )

  def __call__(self, hidden_states, temb=None, deterministic: bool = True):
    residual = hidden_states
    hidden_states = self.norm1(hidden_states)
    hidden_states = nn.swish(hidden_states)
    hidden_states = self.conv1(hidden_states)

    if temb is not None:
      hidden_states = hidden_states + self.temb_proj(
          nn.swish(temb))[:, :, None, None]  # TODO: check shapes

    hidden_states = self.norm2(hidden_states)
    hidden_states = nn.swish(hidden_states)
    hidden_states = self.dropout(hidden_states, deterministic)
    hidden_states = self.conv2(hidden_states)

    if self.in_channels != self.out_channels_:
      if self.use_conv_shortcut:
        residual = self.conv_shortcut(residual)
      else:
        residual = self.nin_shortcut(residual)

    return hidden_states + residual


class AttnBlock(nn.Module):
  in_channels: int
  dtype: jnp.dtype = jnp.float32

  def setup(self):
    conv = partial(nn.Conv,
                   self.in_channels,
                   kernel_size=(1, 1),
                   strides=(1, 1),
                   padding="VALID",
                   dtype=self.dtype)

    self.norm = nn.GroupNorm(num_groups=32, epsilon=1e-6)
    self.q, self.k, self.v = conv(), conv(), conv()
    self.proj_out = conv()

  def __call__(self, hidden_states):
    residual = hidden_states
    hidden_states = self.norm(hidden_states)

    query = self.q(hidden_states)
    key = self.k(hidden_states)
    value = self.v(hidden_states)

    # compute attentions
    batch, height, width, channels = query.shape
    query = query.reshape((batch, height * width, channels))
    key = key.reshape((batch, height * width, channels))
    attn_weights = jnp.einsum("...qc,...kc->...qk", query, key)
    attn_weights = attn_weights * (int(channels)**-0.5)
    attn_weights = nn.softmax(attn_weights, axis=2)

    ## attend to values
    value = value.reshape((batch, height * width, channels))
    hidden_states = jnp.einsum("...kc,...qk->...qc", value, attn_weights)
    hidden_states = hidden_states.reshape((batch, height, width, channels))

    hidden_states = self.proj_out(hidden_states)
    hidden_states = hidden_states + residual
    return hidden_states


class UpsamplingBlock(nn.Module):
  config: VQGANConfig
  curr_res: int
  block_idx: int
  dtype: jnp.dtype = jnp.float32

  def setup(self):
    if self.block_idx == self.config.num_resolutions - 1:
      block_in = self.config.ch * self.config.ch_mult[-1]
    else:
      block_in = self.config.ch * self.config.ch_mult[self.block_idx + 1]

    block_out = self.config.ch * self.config.ch_mult[self.block_idx]
    self.temb_ch = 0

    res_blocks = []
    attn_blocks = []
    for _ in range(self.config.num_res_blocks + 1):
      res_blocks.append(
          ResnetBlock(block_in,
                      block_out,
                      temb_channels=self.temb_ch,
                      dropout_prob=self.config.dropout,
                      dtype=self.dtype))
      block_in = block_out
      if self.curr_res in self.config.attn_resolutions:
        attn_blocks.append(AttnBlock(block_in, dtype=self.dtype))

    self.block = res_blocks
    self.attn = attn_blocks

    self.upsample = None
    if self.block_idx != 0:
      self.upsample = Upsample(block_in,
                               self.config.resamp_with_conv,
                               dtype=self.dtype)

  def __call__(self, hidden_states, temb=None, deterministic: bool = True):
    for res_block in self.block:
      hidden_states = res_block(hidden_states,
                                temb,
                                deterministic=deterministic)
      for attn_block in self.attn:
        hidden_states = attn_block(hidden_states)

    if self.upsample is not None:
      hidden_states = self.upsample(hidden_states)

    return hidden_states


class DownsamplingBlock(nn.Module):
  config: VQGANConfig
  curr_res: int
  block_idx: int
  dtype: jnp.dtype = jnp.float32

  def setup(self):
    in_ch_mult = (1, ) + tuple(self.config.ch_mult)
    block_in = self.config.ch * in_ch_mult[self.block_idx]
    block_out = self.config.ch * self.config.ch_mult[self.block_idx]
    self.temb_ch = 0

    res_blocks = []
    attn_blocks = []
    for _ in range(self.config.num_res_blocks):
      res_blocks.append(
          ResnetBlock(block_in,
                      block_out,
                      temb_channels=self.temb_ch,
                      dropout_prob=self.config.dropout,
                      dtype=self.dtype))
      block_in = block_out
      if self.curr_res in self.config.attn_resolutions:
        attn_blocks.append(AttnBlock(block_in, dtype=self.dtype))

    self.block = res_blocks
    self.attn = attn_blocks

    self.downsample = None
    if self.block_idx != self.config.num_resolutions - 1:
      self.downsample = Downsample(block_in,
                                   self.config.resamp_with_conv,
                                   dtype=self.dtype)

  def __call__(self, hidden_states, temb=None, deterministic: bool = True):
    for res_block in self.block:
      hidden_states = res_block(hidden_states,
                                temb,
                                deterministic=deterministic)
      for attn_block in self.attn:
        hidden_states = attn_block(hidden_states)

    if self.downsample is not None:
      hidden_states = self.downsample(hidden_states)

    return hidden_states


class MidBlock(nn.Module):
  in_channels: int
  temb_channels: int
  dropout: float
  dtype: jnp.dtype = jnp.float32

  def setup(self):
    self.block_1 = ResnetBlock(
        self.in_channels,
        self.in_channels,
        temb_channels=self.temb_channels,
        dropout_prob=self.dropout,
        dtype=self.dtype,
    )
    self.attn_1 = AttnBlock(self.in_channels, dtype=self.dtype)
    self.block_2 = ResnetBlock(
        self.in_channels,
        self.in_channels,
        temb_channels=self.temb_channels,
        dropout_prob=self.dropout,
        dtype=self.dtype,
    )

  def __call__(self, hidden_states, temb=None, deterministic: bool = True):
    hidden_states = self.block_1(hidden_states,
                                 temb,
                                 deterministic=deterministic)
    hidden_states = self.attn_1(hidden_states)
    hidden_states = self.block_2(hidden_states,
                                 temb,
                                 deterministic=deterministic)
    return hidden_states


class Encoder(nn.Module):
  config: VQGANConfig
  dtype: jnp.dtype = jnp.float32

  def setup(self):
    self.temb_ch = 0

    # downsampling
    self.conv_in = nn.Conv(
        self.config.ch,
        kernel_size=(3, 3),
        strides=(1, 1),
        padding=((1, 1), (1, 1)),
        dtype=self.dtype,
    )

    curr_res = self.config.resolution
    downsample_blocks = []
    for i_level in range(self.config.num_resolutions):
      downsample_blocks.append(
          DownsamplingBlock(self.config,
                            curr_res,
                            block_idx=i_level,
                            dtype=self.dtype))

      if i_level != self.config.num_resolutions - 1:
        curr_res = curr_res // 2
    self.down = downsample_blocks

    # middle
    mid_channels = self.config.ch * self.config.ch_mult[-1]
    self.mid = MidBlock(mid_channels,
                        self.temb_ch,
                        self.config.dropout,
                        dtype=self.dtype)

    # end
    self.norm_out = nn.GroupNorm(num_groups=32, epsilon=1e-6)
    self.conv_out = nn.Conv(
        2 * self.config.z_channels
        if self.config.double_z else self.config.z_channels,
        kernel_size=(3, 3),
        strides=(1, 1),
        padding=((1, 1), (1, 1)),
        dtype=self.dtype,
    )

  def __call__(self, pixel_values, deterministic: bool = True):
    # timestep embedding
    temb = None

    # downsampling
    hidden_states = self.conv_in(pixel_values)
    for block in self.down:
      hidden_states = block(hidden_states, temb, deterministic=deterministic)

    # middle
    hidden_states = self.mid(hidden_states, temb, deterministic=deterministic)

    # end
    hidden_states = self.norm_out(hidden_states)
    hidden_states = nn.swish(hidden_states)
    hidden_states = self.conv_out(hidden_states)

    return hidden_states


class Decoder(nn.Module):
  config: VQGANConfig
  dtype: jnp.dtype = jnp.float32

  def setup(self):
    self.temb_ch = 0

    # compute in_ch_mult, block_in and curr_res at lowest res
    block_in = self.config.ch * self.config.ch_mult[self.config.num_resolutions
                                                    - 1]
    curr_res = self.config.resolution // 2**(self.config.num_resolutions - 1)
    self.z_shape = (1, self.config.z_channels, curr_res, curr_res)
    print("Working with z of shape {} = {} dimensions.".format(
        self.z_shape, np.prod(self.z_shape)))

    # z to block_in
    self.conv_in = nn.Conv(
        block_in,
        kernel_size=(3, 3),
        strides=(1, 1),
        padding=((1, 1), (1, 1)),
        dtype=self.dtype,
    )

    # middle
    self.mid = MidBlock(block_in,
                        self.temb_ch,
                        self.config.dropout,
                        dtype=self.dtype)

    # upsampling
    upsample_blocks = []
    for i_level in reversed(range(self.config.num_resolutions)):
      upsample_blocks.append(
          UpsamplingBlock(self.config,
                          curr_res,
                          block_idx=i_level,
                          dtype=self.dtype))
      if i_level != 0:
        curr_res = curr_res * 2
    self.up = list(
        reversed(upsample_blocks))  # reverse to get consistent order

    # end
    self.norm_out = nn.GroupNorm(num_groups=32, epsilon=1e-6)
    self.conv_out = nn.Conv(
        self.config.out_ch,
        kernel_size=(3, 3),
        strides=(1, 1),
        padding=((1, 1), (1, 1)),
        dtype=self.dtype,
    )

  def __call__(self, hidden_states, deterministic: bool = True):
    # timestep embedding
    temb = None

    # z to block_in
    hidden_states = self.conv_in(hidden_states)

    # middle
    hidden_states = self.mid(hidden_states, temb, deterministic=deterministic)

    # upsampling
    for block in reversed(self.up):
      hidden_states = block(hidden_states, temb, deterministic=deterministic)

    # end
    if self.config.give_pre_end:
      return hidden_states

    hidden_states = self.norm_out(hidden_states)
    hidden_states = nn.swish(hidden_states)
    hidden_states = self.conv_out(hidden_states)

    return hidden_states


class VectorQuantizer(nn.Module):
  """
    see https://github.com/MishaLaskin/vqvae/blob/d761a999e2267766400dc646d82d3ac3657771d4/models/quantizer.py
    ____________________________________________
    Discretization bottleneck part of the VQ-VAE.
    Inputs:
    - n_e : number of embeddings
    - e_dim : dimension of embedding
    - beta : commitment cost used in loss term, beta * ||z_e(x)-sg[e]||^2
    _____________________________________________
    """

  config: VQGANConfig
  dtype: jnp.dtype = jnp.float32

  def setup(self):
    self.embedding = nn.Embed(self.config.n_embed,
                              self.config.embed_dim,
                              dtype=self.dtype)  # TODO: init

  def __call__(self, hidden_states):
    """
        Inputs the output of the encoder network z and maps it to a discrete
        one-hot vector that is the index of the closest embedding vector e_j
        z (continuous) -> z_q (discrete)
        z.shape = (batch, channel, height, width)
        quantization pipeline:
            1. get encoder input (B,C,H,W)
            2. flatten input to (B*H*W,C)
        """
    #  flatten
    hidden_states_flattended = hidden_states.reshape(
        (-1, self.config.embed_dim))

    # dummy op to init the weights, so we can access them below
    self.embedding(jnp.ones((1, 1), dtype="i4"))

    # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
    emb_weights = self.variables["params"]["embedding"]["embedding"]
    distance = (jnp.sum(hidden_states_flattended**2, axis=1, keepdims=True) +
                jnp.sum(emb_weights**2, axis=1) -
                2 * jnp.dot(hidden_states_flattended, emb_weights.T))

    # get quantized latent vectors
    min_encoding_indices = jnp.argmin(distance, axis=1)
    z_q = self.embedding(min_encoding_indices).reshape(hidden_states.shape)

    # reshape to (batch, num_tokens)
    min_encoding_indices = min_encoding_indices.reshape(
        hidden_states.shape[0], -1)

    # compute the codebook_loss (q_loss) outside the model
    # here we return the embeddings and indices
    return z_q, min_encoding_indices

  def get_codebook_entry(self, indices, shape=None):
    # indices are expected to be of shape (batch, num_tokens)
    # get quantized latent vectors
    batch, num_tokens = indices.shape
    z_q = self.embedding(indices)
    z_q = z_q.reshape(batch, int(math.sqrt(num_tokens)),
                      int(math.sqrt(num_tokens)), -1)
    return z_q


class VQModule(nn.Module):
  config: VQGANConfig
  dtype: jnp.dtype = jnp.float32

  def setup(self):
    self.encoder = Encoder(self.config, dtype=self.dtype)
    self.decoder = Decoder(self.config, dtype=self.dtype)
    self.quantize = VectorQuantizer(self.config, dtype=self.dtype)
    self.quant_conv = nn.Conv(
        self.config.embed_dim,
        kernel_size=(1, 1),
        strides=(1, 1),
        padding="VALID",
        dtype=self.dtype,
    )
    self.post_quant_conv = nn.Conv(
        self.config.z_channels,
        kernel_size=(1, 1),
        strides=(1, 1),
        padding="VALID",
        dtype=self.dtype,
    )

  def encode(self, pixel_values, deterministic: bool = True):
    hidden_states = self.encoder(pixel_values, deterministic=deterministic)
    hidden_states = self.quant_conv(hidden_states)
    quant_states, indices = self.quantize(hidden_states)
    return quant_states, indices

  def decode(self, hidden_states, deterministic: bool = True):
    hidden_states = self.post_quant_conv(hidden_states)
    hidden_states = self.decoder(hidden_states, deterministic=deterministic)
    return hidden_states

  def decode_code(self, code_b):
    hidden_states = self.quantize.get_codebook_entry(code_b)
    hidden_states = self.decode(hidden_states)
    return hidden_states

  def __call__(self, pixel_values, deterministic: bool = True):
    quant_states, indices = self.encode(pixel_values, deterministic)
    hidden_states = self.decode(quant_states, deterministic)
    return hidden_states, indices


class VQGANPreTrainedModel(FlaxPreTrainedModel):
  """
    An abstract class to handle weights initialization and a simple interface
    for downloading and loading pretrained models.
    """

  config_class = VQGANConfig
  base_model_prefix = "model"
  module_class: nn.Module = None

  def __init__(
      self,
      config: VQGANConfig,
      input_shape: Tuple = (1, 256, 256, 3),
      seed: int = 0,
      dtype: jnp.dtype = jnp.float32,
      **kwargs,
  ):
    module = self.module_class(config=config, dtype=dtype, **kwargs)
    super().__init__(config,
                     module,
                     input_shape=input_shape,
                     seed=seed,
                     dtype=dtype)

  def init_weights(self, rng: jax.random.PRNGKey,
                   input_shape: Tuple) -> FrozenDict:
    # init input tensors
    pixel_values = jnp.zeros(input_shape, dtype=jnp.float32)
    params_rng, dropout_rng = jax.random.split(rng)
    rngs = {"params": params_rng, "dropout": dropout_rng}

    return self.module.init(rngs, pixel_values)["params"]

  def encode(self,
             pixel_values,
             params: dict = None,
             dropout_rng: jax.random.PRNGKey = None,
             train: bool = False):
    # Handle any PRNG if needed
    rngs = {"dropout": dropout_rng} if dropout_rng is not None else {}

    return self.module.apply({"params": params or self.params},
                             jnp.array(pixel_values),
                             not train,
                             rngs=rngs,
                             method=self.module.encode)

  def decode(self,
             hidden_states,
             params: dict = None,
             dropout_rng: jax.random.PRNGKey = None,
             train: bool = False):
    # Handle any PRNG if needed
    rngs = {"dropout": dropout_rng} if dropout_rng is not None else {}

    return self.module.apply(
        {"params": params or self.params},
        jnp.array(hidden_states),
        not train,
        rngs=rngs,
        method=self.module.decode,
    )

  def decode_code(self, indices, params: dict = None):
    return self.module.apply({"params": params or self.params},
                             jnp.array(indices, dtype="i4"),
                             method=self.module.decode_code)

  def __call__(
      self,
      pixel_values,
      params: dict = None,
      dropout_rng: jax.random.PRNGKey = None,
      train: bool = False,
  ):
    # Handle any PRNG if needed
    rngs = {"dropout": dropout_rng} if dropout_rng is not None else {}

    return self.module.apply(
        {"params": params or self.params},
        jnp.array(pixel_values),
        not train,
        rngs=rngs,
    )


class VQModel(VQGANPreTrainedModel):
  module_class = VQModule