IC_11 / README.md
gustavokpc's picture
Training in progress epoch 6
35a13be
|
raw
history blame
3.56 kB
metadata
license: apache-2.0
base_model: bert-large-uncased
tags:
  - generated_from_keras_callback
model-index:
  - name: gustavokpc/IC_11
    results: []

gustavokpc/IC_11

This model is a fine-tuned version of bert-large-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.1200
  • Train Accuracy: 0.9569
  • Train F1 M: 0.5414
  • Train Precision M: 0.3981
  • Train Recall M: 0.9034
  • Validation Loss: 0.2290
  • Validation Accuracy: 0.9202
  • Validation F1 M: 0.5513
  • Validation Precision M: 0.4022
  • Validation Recall M: 0.9261
  • Epoch: 6

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-06, 'decay_steps': 5306, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
  • training_precision: float32

Training results

Train Loss Train Accuracy Train F1 M Train Precision M Train Recall M Validation Loss Validation Accuracy Validation F1 M Validation Precision M Validation Recall M Epoch
0.4434 0.8014 0.4236 0.3661 0.5865 0.2743 0.8872 0.4964 0.3787 0.7644 0
0.2804 0.8901 0.4898 0.3778 0.7488 0.2824 0.8879 0.5567 0.4181 0.8782 1
0.2254 0.9128 0.5069 0.3838 0.8028 0.2388 0.9090 0.5468 0.4009 0.9053 2
0.1873 0.9303 0.5203 0.3889 0.8490 0.2200 0.9149 0.5561 0.4075 0.9235 3
0.1614 0.9404 0.5316 0.3944 0.8756 0.2188 0.9235 0.5566 0.4080 0.9242 4
0.1380 0.9497 0.5359 0.3956 0.8898 0.2205 0.9228 0.5506 0.4024 0.9213 5
0.1200 0.9569 0.5414 0.3981 0.9034 0.2290 0.9202 0.5513 0.4022 0.9261 6

Framework versions

  • Transformers 4.34.1
  • TensorFlow 2.14.0
  • Datasets 2.14.5
  • Tokenizers 0.14.1