--- license: cc-by-4.0 datasets: - nwu-ctext/nchlt language: - afr - eng - nbl - nso - sot - ssw - tsn - tso - ven - xho - zul base_model: facebook/mms-1b-all pipeline_tag: automatic-speech-recognition --- Inference Example ```python from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC import torch import librosa import os model_name = "guymandude/MMS-ASR-ZA-11" def load_audio_file(path): audio_array, sampling_rate = librosa.load(path, sr=None) return {"array": audio_array, "sampling_rate": sampling_rate} model = Wav2Vec2ForCTC.from_pretrained(model_name,ignore_mismatched_sizes=True).to("cuda") processor = Wav2Vec2Processor.from_pretrained(model_name) # change to supported languages [eng, afr, sot, zul, xho, nso, nbl, tso, tsn, ven, ssw] model.load_adapter("tsn") processor.tokenizer.set_target_lang("tsn") audio = load_audio_file("