LunarLander-v2-PPO / config.json
guza's picture
Improve PPO trained agent to 276.44 +/- 21.651967758051594
eac14dc
raw
history blame
13.6 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff40e7453f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff40e745480>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff40e745510>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff40e7455a0>", "_build": "<function ActorCriticPolicy._build at 0x7ff40e745630>", "forward": "<function ActorCriticPolicy.forward at 0x7ff40e7456c0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ff40e745750>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff40e7457e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7ff40e745870>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff40e745900>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff40e745990>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff40e745a20>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ff40e756780>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1683860579450461900, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABodNz3D2Xy6rLsOtcbbga9cZKy6GJJsNAAAgD8AAIA/mme2POMH8D5uzUk91IOovtyNebw+coo8AAAAAAAAAADGyD6+TWd1P1Ai3b6idBW/w6S0vmrxYr4AAAAAAAAAAJqxhDxFfQQ+IDp0vSAqh74XswO9MEt4PQAAAAAAAAAA7Sknvtm7uj6jDFQ+50zXvmdTcT3rql67AAAAAAAAAACmZJm9d2cZPuBpUT726ba+VdSqPdUjXb0AAAAAAAAAAKDAGb6DbIs+GGJNPltn3b4JPwA9lvNiPQAAAAAAAAAAjc2aPZ3SwT+wutI+fzBsPR0b7zySYyM+AAAAAAAAAACazdu7FCyuujqbxjlvtZk1iC+zuXDF47gAAIA/AACAPzMYrzx7oKK6JcAtupF1/bjtXew6Pc9VOQAAgD8AAIA/850Ovunwoj7O3lU+oVzZvsuJm7qNGvI9AAAAAAAAAAAN+Mg9MJmYPmDd8r3GzZe+aRkYvWMPrDsAAAAAAAAAAGC2Jz70NYW8naXCukIrEzkQUOu9mrQDOgAAgD8AAAAAqlO+Pj3edb1+n/A9/kZUvDBxab6HBwY9AAAAAAAAAABmNg479jR0uke0CjKvikywbX5TutzNBrIAAIA/AACAP6D5Hj5o41c/hCskPmDVDL+x2Y0+9FnBvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV7QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHGbl5KODJ6MAWyUS/aMAXSUR0C6iAB/7SApdX2UKGgGR0BLf+SB9TgmaAdN6ANoCEdAuojNQTEiuHV9lChoBkdAcTG1klNUO2gHTQEBaAhHQLqI0rE9+w11fZQoaAZHQHFFuZssQNFoB0vQaAhHQLqI+YL9deJ1fZQoaAZHQHMowEhaC+VoB0v5aAhHQLqJARKYiPh1fZQoaAZHQHCFH0btJFtoB0v6aAhHQLqJMWDpTuR1fZQoaAZHQHMG4065oXdoB0vWaAhHQLqJND0UXYV1fZQoaAZHQG+mRw6ySmtoB0vZaAhHQLqJN0dRzil1fZQoaAZHQHEhlZkkKNRoB0vhaAhHQLqJT3Jgb6x1fZQoaAZHQHIwon0Cih5oB0v0aAhHQLqJeeS0Sh91fZQoaAZHQHEWRjz7MxJoB0vzaAhHQLqJltPYWcl1fZQoaAZHQHEPmbTc6/9oB0vkaAhHQLqJpcBEKE51fZQoaAZHQHBXgZ4wAVBoB0vJaAhHQLqJzGRmseZ1fZQoaAZHQHCJRybQTmJoB0v1aAhHQLqJ5pgkTpR1fZQoaAZHQHIketwJgLJoB0vTaAhHQLqJ6Rw6ySp1fZQoaAZHQHJOOsYEW69oB0v5aAhHQLqKA8twrDt1fZQoaAZHQG6ZhsqJ/G5oB0vSaAhHQLqKoq2SdOJ1fZQoaAZHQHH20GqxTsJoB02UAWgIR0C6irJeAuqWdX2UKGgGR0BtwKqABkqdaAdL42gIR0C6ispXIU8FdX2UKGgGR0Bw9OcslLOBaAdL2WgIR0C6ivPSlWOqdX2UKGgGR0Bw9B/NJOFhaAdLxWgIR0C6iv3bdrO8dX2UKGgGR0BPgn9FWn0kaAdLh2gIR0C6izYX40uUdX2UKGgGR0ByQsIUrTYvaAdL7mgIR0C6izohhYvGdX2UKGgGR0Btr4GMXJo1aAdL0mgIR0C6i0Jbpu/DdX2UKGgGR0BwH8zQ/oq1aAdL5GgIR0C6i1P/vOQhdX2UKGgGR0Bx4o4DLbHqaAdNDwFoCEdAuou58zAN5XV9lChoBkdAcar/YJ3PiWgHS9ZoCEdAuovcona37XV9lChoBkdAclRs9SuQqGgHS/NoCEdAuovr9zfaYnV9lChoBkdAcgsuJ1q33GgHS+5oCEdAuovxl2/zrnV9lChoBkdAcp/cFhXr+2gHS+FoCEdAuowbIHTqjnV9lChoBkdAciS1IiC8OGgHS9xoCEdAuowy+36RAHV9lChoBkdAcenyk9ECvGgHTUYBaAhHQLqMnf5ULlV1fZQoaAZHQHEUZ5E+gUVoB0vVaAhHQLqM0PNFBpp1fZQoaAZHQHKk59Vmz0JoB0vHaAhHQLqM++L3sX11fZQoaAZHQHGiUZ75VOtoB0vjaAhHQLqNBiwjdHl1fZQoaAZHQHRDDSb6P81oB0vgaAhHQLqNFGQSzxB1fZQoaAZHQFFFgIhQm/poB0t4aAhHQLqNGGcFyJd1fZQoaAZHQHLmmYfGMn9oB0u8aAhHQLqRW54nndR1fZQoaAZHQHAIkLx7RfFoB0vcaAhHQLqRZbwSamZ1fZQoaAZHQHAm75qM3qBoB0vZaAhHQLqRf6S1Vo91fZQoaAZHQHNowTh5xBFoB0vUaAhHQLqRicp9ZzR1fZQoaAZHQHDOs4PwuuloB0vOaAhHQLqRwb4agmJ1fZQoaAZHQHOIC8e0XxhoB0vTaAhHQLqR6RArxy51fZQoaAZHQHMLEpZwGW5oB0vHaAhHQLqR8/0NBnl1fZQoaAZHQHGTNkrf+CNoB0vgaAhHQLqSA27FsHl1fZQoaAZHQHOicTewcHZoB0vMaAhHQLqSVFl05lx1fZQoaAZHQHOknmvGIbhoB0vcaAhHQLqSk6QvHtF1fZQoaAZHQHPuwMpgCwNoB00bAWgIR0C6kpdWp6yCdX2UKGgGR0Bysh0GNaQnaAdL0WgIR0C6kqOHerMldX2UKGgGR0BxjiXUpd8iaAdL4mgIR0C6krtiQT24dX2UKGgGR0Bw/CKNyYG/aAdL3mgIR0C6ktK8DjiodX2UKGgGR0BzFiILw4KhaAdL82gIR0C6kuufdyksdX2UKGgGR0ByYCECeVcEaAdLzWgIR0C6kurBj4HpdX2UKGgGR0Bv3DNr0rbyaAdL3GgIR0C6kvrMTviMdX2UKGgGR0BxQ1zDGcWkaAdL9GgIR0C6kwVp0wJxdX2UKGgGR0Bu2D/ZM+NcaAdLz2gIR0C6kysFQl8gdX2UKGgGR0BACzfrKNhmaAdLsmgIR0C6kyuPFNtZdX2UKGgGR0BxyeEvkBCEaAdL2GgIR0C6k2CzPa+OdX2UKGgGR8BJIsLF4s3AaAdLcGgIR0C6k6xIatLddX2UKGgGR0BxwPIzWPLgaAdL9GgIR0C6k6zSCvovdX2UKGgGR0Bx8LmDDjzaaAdL1WgIR0C6lBPxtpEhdX2UKGgGR0BxSMvysjmkaAdL42gIR0C6lD3NX5nEdX2UKGgGR0BwgfIcR15jaAdL4WgIR0C6lFbM9r44dX2UKGgGR0BxYDzCk43naAdL+GgIR0C6lFj2zv7WdX2UKGgGR0BxyLqcEvCeaAdL6WgIR0C6lIWDg62fdX2UKGgGR0Byiv6BRQ7+aAdNNwFoCEdAupSVbaAWi3V9lChoBkdAclgnMt9QXWgHS9toCEdAupSjGXHBDXV9lChoBkdAclYrWRRuTGgHTeUBaAhHQLqUsFmWdEt1fZQoaAZHQHDcoexOclRoB0vtaAhHQLqUuSm65G11fZQoaAZHQHEkTaPCEYhoB0vnaAhHQLqU4Y3vQWx1fZQoaAZHQHOqZD7ZWaNoB0vLaAhHQLqU6Dxb0OF1fZQoaAZHQHErb8FY+0RoB00BAWgIR0C6lRMHfMwDdX2UKGgGR0BJm2wu/UONaAdLiGgIR0C6lUVERaoudX2UKGgGR0BwXNV94NZvaAdL1mgIR0C6lU0dq+JxdX2UKGgGR0BxVQZKnNxEaAdLxWgIR0C6lZEYsNDudX2UKGgGR0Bw9OVhTfixaAdNCwFoCEdAupWzMyJsPHV9lChoBkdAci3QKrq+rWgHS9doCEdAupX0EkjX4HV9lChoBkdAbw0prDZUUGgHS+JoCEdAupYNw++ueXV9lChoBkdAcjJuOCGvfWgHS9NoCEdAupYZAKOT7nV9lChoBkdASajwjMV1wGgHS8FoCEdAupYf7TDwY3V9lChoBkdAcSgQ8OkLyGgHS8toCEdAupYlwR5C4XV9lChoBkdAcBV8BMi8nWgHS85oCEdAupZAP9UCJXV9lChoBkdAcOO8pkPMCGgHS9RoCEdAupZ1IBikPHV9lChoBkfAAI9Net0V8GgHS2ZoCEdAupZ3Ub1h9nV9lChoBkdAcccmJWNm2GgHTRQBaAhHQLqWnx0MgEF1fZQoaAZHQHEoMCHRCyBoB0vpaAhHQLqWo8Hv+fh1fZQoaAZHQG8d+4b0e2doB0vRaAhHQLqW0/tIClt1fZQoaAZHQHKipbMX7+FoB00zAmgIR0C6lxeBxxT9dX2UKGgGR0ByHLcEeQuFaAdL92gIR0C6ly5OBUaRdX2UKGgGR0Bmo3ugHu7ZaAdN6ANoCEdAupcuoNutOnV9lChoBkdAcvPT6zmfXmgHS9toCEdAupf3dweeWnV9lChoBkdAcAojgAIY32gHS+hoCEdAupf7A9FF2HV9lChoBkdAcSALlV94NmgHS8toCEdAupge38XN1XV9lChoBkdAcApMBZIQOGgHS9xoCEdAupgmYfGMoHV9lChoBkdAct24gRsdk2gHS+toCEdAuphKy4Wk8HV9lChoBkdAcHhlQuVX3mgHS/JoCEdAuphWEvkBCHV9lChoBkdAcUzr6+FlCmgHS81oCEdAuph4I8hcJXV9lChoBkdAcOC9d/rjYWgHS+ZoCEdAupkJQ53kgnV9lChoBkdAcRYjwx33YmgHS/ZoCEdAupkzGff4y3V9lChoBkdAb4i3YL9deWgHS+loCEdAuplmEDhcaHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 492, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.10.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}