guza's picture
Improve PPO trained agent, change gama to 0.99
427f21f
{
"policy_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
"__module__": "stable_baselines3.common.policies",
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
"__init__": "<function ActorCriticPolicy.__init__ at 0x7ff40e7453f0>",
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff40e745480>",
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff40e745510>",
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff40e7455a0>",
"_build": "<function ActorCriticPolicy._build at 0x7ff40e745630>",
"forward": "<function ActorCriticPolicy.forward at 0x7ff40e7456c0>",
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7ff40e745750>",
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff40e7457e0>",
"_predict": "<function ActorCriticPolicy._predict at 0x7ff40e745870>",
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff40e745900>",
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff40e745990>",
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff40e745a20>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc._abc_data object at 0x7ff40e756780>"
},
"verbose": 1,
"policy_kwargs": {},
"num_timesteps": 1507328,
"_total_timesteps": 1500000,
"_num_timesteps_at_start": 0,
"seed": null,
"action_noise": null,
"start_time": 1683865859428345813,
"learning_rate": 0.0003,
"tensorboard_log": null,
"_last_obs": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJpdfbwKylK7AHpmu6SpqTzQwJw8N6qQvQAAgD8AAIA/ACCROkoBsz8iq+U9wZMNvztJp7riF9C8AAAAAAAAAADzI9U9PJ+kP1a1lD55XxC/b6FCPrI4szwAAAAAAAAAAM38B77LuvY92m3hPaO5Pb7gZCQ8igmuPAAAAAAAAAAA5o6gvby8SD02Bhw+SntYvr9vUz0DlRG9AAAAAAAAAAAzr6W9qglgPjJmlrxFF6S+L2GPvRO5BzwAAAAAAAAAAJrlIbwU5Ia6U5NxOt7bB7YGs9M5xH2MuQAAgD8AAIA/gNJcPfaiOz3hSke+Ob6OvgRwoL3CFSm9AAAAAAAAAACNN0S+9LnBvLZ1Z7zd9O+69vEuPgRZwjsAAIA/AACAPwAfGL7bfZM9CtBUPvuJnL5BqXA+rv0xvgAAAAAAAAAABpAqPkjwmbyMFTw8hpntuuVGCb5kM7y7AACAPwAAgD+ztt69iMzbPSqLqT4flom+4Id5PfNQFT0AAAAAAAAAADpuGb7rbPo9XbYpPjzwm74C+/O8KjhAvAAAAAAAAAAAM3MlvPxUbD4Ix8y7azOKvoApArzbGmC9AAAAAAAAAAAmLlG+21HEvEAkT7yksMW6ItosPm6nmjsAAIA/AACAP4BeC77EkOk+3RmYvfGYqb7px869IlbYugAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
},
"_last_episode_starts": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAABAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
},
"_last_original_obs": null,
"_episode_num": 0,
"use_sde": false,
"sde_sample_freq": -1,
"_current_progress_remaining": -0.004885333333333408,
"_stats_window_size": 100,
"ep_info_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWV7QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG3ZXYUWVNaMAWyUS+GMAXSUR0DHXHSpgkTpdX2UKGgGR0Bx+WSB9TgmaAdL7GgIR0DHXH5EMLF5dX2UKGgGR0ByXvS1E3KkaAdNEwFoCEdAx1yP+aScLHV9lChoBkdAcR1vYODraGgHS+9oCEdAx1yShkiD/XV9lChoBkdAcR5W1c+qzmgHS/xoCEdAx1yiidJ8OXV9lChoBkdActZp5/smfGgHTRABaAhHQMdcpcnmaH91fZQoaAZHQHKjQsGxD9hoB0vYaAhHQMdcwifpUxV1fZQoaAZHQHIUlR1oxpNoB0v2aAhHQMdcynQhOgx1fZQoaAZHQHELPa+N96VoB0vZaAhHQMdc1knb7CV1fZQoaAZHQGRQpCjUNKBoB03oA2gIR0DHXOlaEBbOdX2UKGgGR0ByLsPnSv1UaAdL52gIR0DHXQhSJj2BdX2UKGgGR0BwHqW9lEqlaAdL1mgIR0DHXSRULlV+dX2UKGgGR0Bwkog8r7O3aAdL5GgIR0DHXSY6ySmqdX2UKGgGR0BzdCElE7W/aAdNDAFoCEdAx100PNmlInV9lChoBkdAcT8kqc3ERGgHS+1oCEdAx10+dtl7MXV9lChoBkdAcDUpkwvg32gHS+xoCEdAx10/LzwtrnV9lChoBkdAcm0jY7JXAGgHS+hoCEdAx11GwPiDNHV9lChoBkdAb4qnpjc2zmgHS91oCEdAx11RHtnf23V9lChoBkdAcHUz1schkmgHS/NoCEdAx11gnUDuB3V9lChoBkdAcUCxJNCZ4WgHTRUBaAhHQMddYvIn0Cl1fZQoaAZHQHHTQDmr8zhoB0vqaAhHQMddagMUh3d1fZQoaAZHQHJFM2eg+QloB0vfaAhHQMddfT4k/r11fZQoaAZHQHJ0p/b0voNoB0v/aAhHQMddfM5n14B1fZQoaAZHQHAafs/pt79oB0vqaAhHQMddjWj45951fZQoaAZHQHF+8qFyq+9oB0v4aAhHQMddpXuVopR1fZQoaAZHQHB3FBQemvZoB0vdaAhHQMddxTrNW2h1fZQoaAZHQHAeHyd4FA5oB00FAWgIR0DHXchDG96DdX2UKGgGR0BylecNH6MzaAdL8WgIR0DHXfTgsK9gdX2UKGgGR0Bv442jwhGIaAdL3mgIR0DHXf92JSBLdX2UKGgGR0Bw9Fradtl7aAdL9WgIR0DHXgqylenidX2UKGgGR0BvJpKpT/ACaAdL6GgIR0DHXgoybhFWdX2UKGgGR0Bx0azyBkI5aAdL7WgIR0DHXhZczImxdX2UKGgGR0BxMrZL7GedaAdNEwFoCEdAx14XOFg2InV9lChoBkdAbfX9qk/KQ2gHS+ZoCEdAx14bOY6XB3V9lChoBkdAb2sjgydnTWgHS9JoCEdAx14alY2bX3V9lChoBkdAch2KuSwGGGgHS9toCEdAx14kCJ40M3V9lChoBkdAcd/c7QswtmgHS9poCEdAx148tg8bJnV9lChoBkdAcHh0WuX/pGgHTQABaAhHQMdg82bXpW51fZQoaAZHQHEghd+ocaRoB0vWaAhHQMdg9rTH80l1fZQoaAZHQHC9pFspG4JoB0vuaAhHQMdg+PC2tuF1fZQoaAZHQG/EdLpRoAZoB0vlaAhHQMdhF9Net0V1fZQoaAZHQHCiU5IYm9hoB0viaAhHQMdhM51FH8V1fZQoaAZHQHELbOqvNeNoB0vnaAhHQMdhNdb5dnl1fZQoaAZHQHE5/V7Qb+9oB0vtaAhHQMdhaPO6d2B1fZQoaAZHQHEQWI9C/oJoB0vxaAhHQMdhd2LYPG11fZQoaAZHQHHiKl54W1toB0vbaAhHQMdhgLUkOZt1fZQoaAZHQHCWFPnB+F1oB0vTaAhHQMdhg8Gkep51fZQoaAZHQHAq/MGHHm1oB0vzaAhHQMdhhQvxpcp1fZQoaAZHQHIHTs2NvO1oB0vsaAhHQMdhi57PY4B1fZQoaAZHQHBsgnDziCJoB0v7aAhHQMdhjRKpT/B1fZQoaAZHQHI720NSZShoB0vRaAhHQMdhrKIBRyh1fZQoaAZHQHFslVxS5y5oB00WAWgIR0DHYbOlGgBcdX2UKGgGR0BtZkOf/WDpaAdL2WgIR0DHYbwIrvsrdX2UKGgGR0Bvy2qR2bG4aAdL5mgIR0DHYcTdFfAsdX2UKGgGR0BywSXWvr4WaAdNCAFoCEdAx2HSSzw+dXV9lChoBkdAcEhEovzvqmgHS+NoCEdAx2Hn9R77bnV9lChoBkdAcdGB8QZn+WgHS+9oCEdAx2IRTxXnyXV9lChoBkdAcfmsJIDoyWgHS/toCEdAx2Ief8MuvnV9lChoBkdAcbSzZ6D5CWgHS8poCEdAx2I9bnoxH3V9lChoBkdAcDO8b70nPWgHS9xoCEdAx2Jcv4/NaHV9lChoBkdAcZ5QIUrTY2gHS+ZoCEdAx2JgKE3843V9lChoBkdAchVpaiblR2gHTQsBaAhHQMdiakJKJ2t1fZQoaAZHQG8Nr2YfGMpoB0vpaAhHQMdia5Sm65J1fZQoaAZHQHICJntfG+9oB0v4aAhHQMdicJBX0Xh1fZQoaAZHQHEtQFkhA4ZoB0vIaAhHQMdic6S1Vo91fZQoaAZHQG+4LJSzgMtoB00MAWgIR0DHYngA2hqTdX2UKGgGR0BvK2EmICU5aAdL1mgIR0DHYnofbKzSdX2UKGgGR0BvJ5BX0XgtaAdL1GgIR0DHYo03ZPEbdX2UKGgGR0BwYI9W6shgaAdL0mgIR0DHYpkmQbMpdX2UKGgGR0BxV+eBg/keaAdL/mgIR0DHYqhx1gYxdX2UKGgGR0BxEuQV9F4LaAdL4mgIR0DHYr3gR9PUdX2UKGgGR0Bw5jNIK+i8aAdL3WgIR0DHYuKGWUr1dX2UKGgGR0Bx0ywJPZZkaAdL5mgIR0DHYvs+C9RKdX2UKGgGR0Bxm/OJLuhLaAdL1GgIR0DHYwfTodMkdX2UKGgGR0BunACSzPa+aAdL12gIR0DHYytDfFaTdX2UKGgGR0BuTPV09yLiaAdL2WgIR0DHYz9Yr8R+dX2UKGgGR0BtJYWHk92YaAdL2WgIR0DHY0U0iyIIdX2UKGgGR0BrfFcOby6MaAdNtwJoCEdAx2NNvkzXSXV9lChoBkdAce8WvKU3XWgHS+VoCEdAx2NaiB5HE3V9lChoBkdAcPgBl+Vkc2gHS/hoCEdAx2NesmOU+3V9lChoBkdAcRHTbWVeKWgHS9hoCEdAx2NmDlo11nV9lChoBkdAcnMP6sQumWgHS/loCEdAx2NoViWmg3V9lChoBkdAcMWEZBLPEGgHS8toCEdAx2N2qlxffHV9lChoBkdAcIvm4y44ImgHS8toCEdAx2OKnLq2SnV9lChoBkdAcdSEL6UJOWgHS/loCEdAx2OO+GoJiXV9lChoBkdAcQxxmkFfRmgHS89oCEdAx2PEvq1PWXV9lChoBkdAcsNHlwLmZGgHS/FoCEdAx2PO7YChe3V9lChoBkdAcHxTt9hJAmgHS9BoCEdAx2Ptq1w5vXV9lChoBkdAcdTo1DSgG2gHS/FoCEdAx2Puj6eoUHV9lChoBkdAcT5lsguAZ2gHS9toCEdAx2QOPo3aSXV9lChoBkdAbdIkZ75VO2gHS+loCEdAx2QXOC5Et3V9lChoBkdAcNAXnQpnYmgHS8poCEdAx2QdrIHTqnV9lChoBkdAckOZkkKNQ2gHS+poCEdAx2QkT9KmK3V9lChoBkdAcvw4+KTB7GgHS99oCEdAx2QqW4Vh1HV9lChoBkdAcMF7ZFocrGgHS+doCEdAx2Qtl/Yra3V9lChoBkdAccyrOqvNeWgHS+RoCEdAx2Q38NQTEnV9lChoBkdAbr8FLWZqmGgHS91oCEdAx2RAA+6iCnV9lChoBkdAcaMCeEqUeWgHS99oCEdAx2RXa+vhZXV9lChoBkdAcrhMF2V3U2gHS9JoCEdAx2SOaef7JnV9lChoBkdAcOcL9deIEmgHS+toCEdAx2S0mtyPuHVlLg=="
},
"ep_success_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
},
"_n_updates": 368,
"observation_space": {
":type:": "<class 'gymnasium.spaces.box.Box'>",
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
"dtype": "float32",
"bounded_below": "[ True True True True True True True True]",
"bounded_above": "[ True True True True True True True True]",
"_shape": [
8
],
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
"_np_random": null
},
"action_space": {
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
"n": "4",
"start": "0",
"_shape": [],
"dtype": "int64",
"_np_random": null
},
"n_envs": 16,
"n_steps": 1024,
"gamma": 0.99,
"gae_lambda": 0.98,
"ent_coef": 0.01,
"vf_coef": 0.5,
"max_grad_norm": 0.5,
"batch_size": 64,
"n_epochs": 4,
"clip_range": {
":type:": "<class 'function'>",
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
},
"clip_range_vf": null,
"normalize_advantage": true,
"target_kl": null,
"lr_schedule": {
":type:": "<class 'function'>",
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
}
}