Upload PPO trained agent
Browse files- README.md +35 -1
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
CHANGED
@@ -1,3 +1,37 @@
|
|
1 |
---
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 252.64 +/- 25.28
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff40e7453f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff40e745480>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff40e745510>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff40e7455a0>", "_build": "<function ActorCriticPolicy._build at 0x7ff40e745630>", "forward": "<function ActorCriticPolicy.forward at 0x7ff40e7456c0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ff40e745750>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff40e7457e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7ff40e745870>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff40e745900>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff40e745990>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff40e745a20>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ff40e756780>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1683856385722646285, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJpasz3DtXC6aCZtuxG9lrQF5IY7ee2KOgAAgD8AAAAAAEWDPfYcMrrN00e8o1+EPJZ5yzvlDmm9AACAPwAAgD8zmyM71fG1PzxGAT6dSmI+wBI7u8bV57wAAAAAAAAAAOaCDT1I26i6yGRWOS/nPjQvIm+6m+N1uAAAgD8AAIA/JlKDPfbMBrrnRK+3IstPsy9K9zsw9Mw2AACAPwAAgD8zNvg8j1olukYcIburNTQ2fecTu6kkOzoAAIA/AACAP1r80D1SwIm5eHWNOmNa4jV4ad068eykuQAAAAAAAIA/zcx9OpXwIj6SJGW9JLxPvi+kQb3Qbau9AAAAAAAAAAAzwx88w3myP0HUpD5rPou+FPcYvLhTFr0AAAAAAAAAADOFKz0pXAO6bmeoO1B2E7kPH/g603cQuAAAgD8AAIA/s3sZPRRMu7pIiLE7r1jQNu4+r7kNPsq6AACAPwAAgD9mMao8hdv2uYxKG7sxXzO21lAqO4jLoDUAAIA/AACAP9r4Ez6243w/A7rcPc+Enr41ytk9YG+9uwAAAAAAAAAAmpTQPFwTdLr2i9O6Pib6tZrJsLndoPc5AACAPwAAgD+aMZk8SE+GunY8zbovF761/tc4OsgS7zkAAIA/AACAP83tXz32/Bi6r4pAuQDdkjNoyzq7TRRfOAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGB6wKa5PM2MAWyUTegDjAF0lEdAnyq6AFxGUnV9lChoBkdAYkUam4y44WgHTegDaAhHQJ8wKs1baAZ1fZQoaAZHQGMwiF9KEnNoB03oA2gIR0CfMqPrfLs9dX2UKGgGR0Bn/TH+6y0KaAdN6ANoCEdAnzgszdk8R3V9lChoBkdAY4TabnX/YWgHTegDaAhHQJ9EJmpVCHB1fZQoaAZHQGDtAhStNi9oB03oA2gIR0CfS2TGHYYjdX2UKGgGR0BgqQ0dilSCaAdN6ANoCEdAn1FuPeYUnHV9lChoBkdAYsW3GXHBDWgHTegDaAhHQJ9SyI7/4qR1fZQoaAZHQGRi0AT7EYRoB03oA2gIR0CfV3yGzru6dX2UKGgGR0BlE+MKkVN6aAdN6ANoCEdAn1jMglnh9HV9lChoBkdAZacZQ53kgmgHTegDaAhHQJ9Z4qH446x1fZQoaAZHQGc5R6nivPloB03oA2gIR0CfXPs41gpjdX2UKGgGR0BjoebG3nZCaAdN6ANoCEdAn151ImPYF3V9lChoBkdAZtOxLTQVsWgHTegDaAhHQJ9lFAUtZmt1fZQoaAZHQGN6MnAqNIdoB03oA2gIR0CfZw2Yv38GdX2UKGgGR0BhIHdGiHqNaAdN6ANoCEdAn2egm/nGKnV9lChoBkdAZWcsgdOqN2gHTegDaAhHQJ+LIMI/qxF1fZQoaAZHQGRtId2gWadoB03oA2gIR0Cfj7OclPaddX2UKGgGR0BgV6lenhsJaAdN6ANoCEdAn5GBcqvvB3V9lChoBkdAZHY8U21lXmgHTegDaAhHQJ+VmEsasIV1fZQoaAZHQGHthBZ6lchoB03oA2gIR0CfnoqQRwqBdX2UKGgGR0BkJaCUX531aAdN6ANoCEdAn6Xkk8ifQXV9lChoBkdAYiMmLtNSImgHTegDaAhHQJ+ubTZxrBV1fZQoaAZHQGae0D2alUJoB03oA2gIR0CfsFr6tT1kdX2UKGgGR0Bg2Jo4+8oQaAdN6ANoCEdAn7eLg4wRG3V9lChoBkdAZ6FYraufVmgHTegDaAhHQJ+5PujRD1J1fZQoaAZHQGNVKEnLJS1oB03oA2gIR0CfuoD/2kBTdX2UKGgGR0BgLqzPa+N+aAdN6ANoCEdAn74qifxtpHV9lChoBkdAY6bbDdgv12gHTegDaAhHQJ+/zssxwhp1fZQoaAZHQGHCfc32mHhoB03oA2gIR0CfxpzV+Zw5dX2UKGgGR0Bm5LrJKaodaAdN6ANoCEdAn8iP9gnc+XV9lChoBkdAZvOq4H5aeWgHTegDaAhHQJ/JFJkGzKN1fZQoaAZHQF+94nndO7BoB03oA2gIR0Cf5wSpzcREdX2UKGgGR0BiaiMxXXAeaAdN6ANoCEdAn+yyEUTL4nV9lChoBkdAYFGifQKKHmgHTegDaAhHQJ/u7LPldTp1fZQoaAZHQGCPIMa0hNdoB03oA2gIR0Cf86e9Ba9sdX2UKGgGR0BjYW43FUADaAdN6ANoCEdAn/s5JK8L8nV9lChoBkdAY1ekRjBl+WgHTegDaAhHQKAAoc7Qswt1fZQoaAZHQGIRs5XEIgNoB03oA2gIR0CgA1zP8hs7dX2UKGgGR0BihXeLvTgEaAdN6ANoCEdAoAP/tKIznHV9lChoBkdAZ4ZJyyUs4GgHTegDaAhHQKAGSit7rs11fZQoaAZHQGZfZQP7N0NoB03oA2gIR0CgBurcj7hvdX2UKGgGR0BlmdO0svqUaAdN6ANoCEdAoAd63PRiPXV9lChoBkdAaC+M/hVENWgHTegDaAhHQKAJPqnm7rd1fZQoaAZHQGMKSXUpd8loB03oA2gIR0CgCgE7GNrCdX2UKGgGR0BnqfymQ8wIaAdN6ANoCEdAoA07zErGznV9lChoBkdAZmejxCpm3GgHTegDaAhHQKAOUWrOqvN1fZQoaAZHQGVPymhufmNoB03oA2gIR0CgDrdVFQVLdX2UKGgGR0BgduTzND+jaAdN6ANoCEdAoB+dAPd2xXV9lChoBkdAZBQrwOOKfmgHTegDaAhHQKAha4iosI51fZQoaAZHQGULwWFev6loB03oA2gIR0CgIiq0tyxSdX2UKGgGR0BmiOD6Fds0aAdN6ANoCEdAoCO86T4cm3V9lChoBkdAZ5zAIppeu2gHTegDaAhHQKAnW/Z/Tb51fZQoaAZHQGE3fJ/5LytoB03oA2gIR0CgKmiNbTttdX2UKGgGR0BlGe1pj+aSaAdN6ANoCEdAoC2tGEwnIHV9lChoBkdAZ6+4Vh1DB2gHTegDaAhHQKAum+L3sX11fZQoaAZHQGTNP0AcT8JoB03oA2gIR0CgMfFjEvTPdX2UKGgGR0BiQkpRXOnmaAdN6ANoCEdAoDLg22oegnV9lChoBkdAZbTWIXTEzmgHTegDaAhHQKAzubobGWF1fZQoaAZHQGQZD2Jzkp9oB03oA2gIR0CgNiIduHerdX2UKGgGR0Bhj9h9b5doaAdN6ANoCEdAoDcDLbHp8nV9lChoBkdAYfKxptaY/mgHTegDaAhHQKA6l8UmD151fZQoaAZHQGdSXmvGIbhoB03oA2gIR0CgO50TURWcdX2UKGgGR0Bl2a5LAYYSaAdN6ANoCEdAoDvmerdWQ3V9lChoBkdAZN2qjrRjSWgHTegDaAhHQKBCXNB4Uvh1fZQoaAZHQGJt6gmJFb5oB03oA2gIR0CgTbfrSmZWdX2UKGgGR0Bl84yKvV3EaAdN6ANoCEdAoE7icqe9SXV9lChoBkdAZqTtOVPepGgHTegDaAhHQKBRXhIe5nV1fZQoaAZHQGWVsXSBshxoB03oA2gIR0CgVbQCr92pdX2UKGgGR0BdnkliSaE0aAdN6ANoCEdAoFi7ABT4tnV9lChoBkdAaVMJTl1bJWgHTegDaAhHQKBbV1fVqet1fZQoaAZHQGLXUiILw4NoB03oA2gIR0CgW/7Y02tMdX2UKGgGR0Bj9gsXizcAaAdN6ANoCEdAoF4Z+pfhM3V9lChoBkdAYnTck+otMGgHTegDaAhHQKBes9xp+MJ1fZQoaAZHQGLLbGm1pkBoB03oA2gIR0CgX0MMAmzCdX2UKGgGR0BhrJS3solVaAdN6ANoCEdAoGDsv/R3NnV9lChoBkdAYRM8tf5ULmgHTegDaAhHQKBhuhxo7FN1fZQoaAZHQGd30gB91EFoB03oA2gIR0CgZUbuDzy0dX2UKGgGR0BmvXRsuWa+aAdN6ANoCEdAoGZZDCxeLXV9lChoBkdAY1KYx+KCQWgHTegDaAhHQKBmqwqy4Wl1fZQoaAZHQGLGp9qk/KRoB03oA2gIR0Cgb/LofSx8dX2UKGgGR0BiUua+evpyaAdN6ANoCEdAoHrG8CgbqHV9lChoBkdAYlDlMh5gPWgHTegDaAhHQKB7rlJYkmh1fZQoaAZHQGEOFtKqXF9oB03oA2gIR0CgfYyj59E1dX2UKGgGR0BlZ1/rjYI0aAdN6ANoCEdAoIHzPldTpHV9lChoBkdAcdQmce8wpWgHTZ8CaAhHQKCDJ6xgRbt1fZQoaAZHQGiWlzEJjUdoB03oA2gIR0CghUe4kNWmdX2UKGgGR0BmSgIMSbpeaAdN6ANoCEdAoIkOEsasIXV9lChoBkdAY0e7J4jbBWgHTegDaAhHQKCJ6vzOHFh1fZQoaAZHQGJdWgWac7RoB03oA2gIR0CgjRKEeyRkdX2UKGgGR0Bk2rxXnyNGaAdN6ANoCEdAoI34e1a4c3V9lChoBkdAY47HbypaR2gHTegDaAhHQKCO0WXTmXB1fZQoaAZHQGGff+sHSndoB03oA2gIR0CgkXW/8EV4dX2UKGgGR0Bga8hq0tyxaAdN6ANoCEdAoJUNoJzDGnV9lChoBkdAYjsSJTER8WgHTegDaAhHQKCWFpjc2zh1fZQoaAZHQHBe41xbSqloB03oA2gIR0CglmJvHcUNdX2UKGgGR0BxbkGX5WRzaAdNwwFoCEdAoJjj4nF5wHV9lChoBkdAXUH/tIClrWgHTegDaAhHQKCcfbKRuCR1fZQoaAZHQHIOMDr7fpFoB03wAWgIR0CgnkpgTh5xdX2UKGgGR0BctWugYgq3aAdN6ANoCEdAoJ5UGRmseXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.10.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3c8b65350a04285fca61ab5d2c4a1dbed81e58754162c0861a9cf94380f3a9e1
|
3 |
+
size 146759
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7ff40e7453f0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff40e745480>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff40e745510>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff40e7455a0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7ff40e745630>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7ff40e7456c0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7ff40e745750>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff40e7457e0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7ff40e745870>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff40e745900>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff40e745990>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff40e745a20>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7ff40e756780>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1683856385722646285,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJpasz3DtXC6aCZtuxG9lrQF5IY7ee2KOgAAgD8AAAAAAEWDPfYcMrrN00e8o1+EPJZ5yzvlDmm9AACAPwAAgD8zmyM71fG1PzxGAT6dSmI+wBI7u8bV57wAAAAAAAAAAOaCDT1I26i6yGRWOS/nPjQvIm+6m+N1uAAAgD8AAIA/JlKDPfbMBrrnRK+3IstPsy9K9zsw9Mw2AACAPwAAgD8zNvg8j1olukYcIburNTQ2fecTu6kkOzoAAIA/AACAP1r80D1SwIm5eHWNOmNa4jV4ad068eykuQAAAAAAAIA/zcx9OpXwIj6SJGW9JLxPvi+kQb3Qbau9AAAAAAAAAAAzwx88w3myP0HUpD5rPou+FPcYvLhTFr0AAAAAAAAAADOFKz0pXAO6bmeoO1B2E7kPH/g603cQuAAAgD8AAIA/s3sZPRRMu7pIiLE7r1jQNu4+r7kNPsq6AACAPwAAgD9mMao8hdv2uYxKG7sxXzO21lAqO4jLoDUAAIA/AACAP9r4Ez6243w/A7rcPc+Enr41ytk9YG+9uwAAAAAAAAAAmpTQPFwTdLr2i9O6Pib6tZrJsLndoPc5AACAPwAAgD+aMZk8SE+GunY8zbovF761/tc4OsgS7zkAAIA/AACAP83tXz32/Bi6r4pAuQDdkjNoyzq7TRRfOAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGB6wKa5PM2MAWyUTegDjAF0lEdAnyq6AFxGUnV9lChoBkdAYkUam4y44WgHTegDaAhHQJ8wKs1baAZ1fZQoaAZHQGMwiF9KEnNoB03oA2gIR0CfMqPrfLs9dX2UKGgGR0Bn/TH+6y0KaAdN6ANoCEdAnzgszdk8R3V9lChoBkdAY4TabnX/YWgHTegDaAhHQJ9EJmpVCHB1fZQoaAZHQGDtAhStNi9oB03oA2gIR0CfS2TGHYYjdX2UKGgGR0BgqQ0dilSCaAdN6ANoCEdAn1FuPeYUnHV9lChoBkdAYsW3GXHBDWgHTegDaAhHQJ9SyI7/4qR1fZQoaAZHQGRi0AT7EYRoB03oA2gIR0CfV3yGzru6dX2UKGgGR0BlE+MKkVN6aAdN6ANoCEdAn1jMglnh9HV9lChoBkdAZacZQ53kgmgHTegDaAhHQJ9Z4qH446x1fZQoaAZHQGc5R6nivPloB03oA2gIR0CfXPs41gpjdX2UKGgGR0BjoebG3nZCaAdN6ANoCEdAn151ImPYF3V9lChoBkdAZtOxLTQVsWgHTegDaAhHQJ9lFAUtZmt1fZQoaAZHQGN6MnAqNIdoB03oA2gIR0CfZw2Yv38GdX2UKGgGR0BhIHdGiHqNaAdN6ANoCEdAn2egm/nGKnV9lChoBkdAZWcsgdOqN2gHTegDaAhHQJ+LIMI/qxF1fZQoaAZHQGRtId2gWadoB03oA2gIR0Cfj7OclPaddX2UKGgGR0BgV6lenhsJaAdN6ANoCEdAn5GBcqvvB3V9lChoBkdAZHY8U21lXmgHTegDaAhHQJ+VmEsasIV1fZQoaAZHQGHthBZ6lchoB03oA2gIR0CfnoqQRwqBdX2UKGgGR0BkJaCUX531aAdN6ANoCEdAn6Xkk8ifQXV9lChoBkdAYiMmLtNSImgHTegDaAhHQJ+ubTZxrBV1fZQoaAZHQGae0D2alUJoB03oA2gIR0CfsFr6tT1kdX2UKGgGR0Bg2Jo4+8oQaAdN6ANoCEdAn7eLg4wRG3V9lChoBkdAZ6FYraufVmgHTegDaAhHQJ+5PujRD1J1fZQoaAZHQGNVKEnLJS1oB03oA2gIR0CfuoD/2kBTdX2UKGgGR0BgLqzPa+N+aAdN6ANoCEdAn74qifxtpHV9lChoBkdAY6bbDdgv12gHTegDaAhHQJ+/zssxwhp1fZQoaAZHQGHCfc32mHhoB03oA2gIR0CfxpzV+Zw5dX2UKGgGR0Bm5LrJKaodaAdN6ANoCEdAn8iP9gnc+XV9lChoBkdAZvOq4H5aeWgHTegDaAhHQJ/JFJkGzKN1fZQoaAZHQF+94nndO7BoB03oA2gIR0Cf5wSpzcREdX2UKGgGR0BiaiMxXXAeaAdN6ANoCEdAn+yyEUTL4nV9lChoBkdAYFGifQKKHmgHTegDaAhHQJ/u7LPldTp1fZQoaAZHQGCPIMa0hNdoB03oA2gIR0Cf86e9Ba9sdX2UKGgGR0BjYW43FUADaAdN6ANoCEdAn/s5JK8L8nV9lChoBkdAY1ekRjBl+WgHTegDaAhHQKAAoc7Qswt1fZQoaAZHQGIRs5XEIgNoB03oA2gIR0CgA1zP8hs7dX2UKGgGR0BihXeLvTgEaAdN6ANoCEdAoAP/tKIznHV9lChoBkdAZ4ZJyyUs4GgHTegDaAhHQKAGSit7rs11fZQoaAZHQGZfZQP7N0NoB03oA2gIR0CgBurcj7hvdX2UKGgGR0BlmdO0svqUaAdN6ANoCEdAoAd63PRiPXV9lChoBkdAaC+M/hVENWgHTegDaAhHQKAJPqnm7rd1fZQoaAZHQGMKSXUpd8loB03oA2gIR0CgCgE7GNrCdX2UKGgGR0BnqfymQ8wIaAdN6ANoCEdAoA07zErGznV9lChoBkdAZmejxCpm3GgHTegDaAhHQKAOUWrOqvN1fZQoaAZHQGVPymhufmNoB03oA2gIR0CgDrdVFQVLdX2UKGgGR0BgduTzND+jaAdN6ANoCEdAoB+dAPd2xXV9lChoBkdAZBQrwOOKfmgHTegDaAhHQKAha4iosI51fZQoaAZHQGULwWFev6loB03oA2gIR0CgIiq0tyxSdX2UKGgGR0BmiOD6Fds0aAdN6ANoCEdAoCO86T4cm3V9lChoBkdAZ5zAIppeu2gHTegDaAhHQKAnW/Z/Tb51fZQoaAZHQGE3fJ/5LytoB03oA2gIR0CgKmiNbTttdX2UKGgGR0BlGe1pj+aSaAdN6ANoCEdAoC2tGEwnIHV9lChoBkdAZ6+4Vh1DB2gHTegDaAhHQKAum+L3sX11fZQoaAZHQGTNP0AcT8JoB03oA2gIR0CgMfFjEvTPdX2UKGgGR0BiQkpRXOnmaAdN6ANoCEdAoDLg22oegnV9lChoBkdAZbTWIXTEzmgHTegDaAhHQKAzubobGWF1fZQoaAZHQGQZD2Jzkp9oB03oA2gIR0CgNiIduHerdX2UKGgGR0Bhj9h9b5doaAdN6ANoCEdAoDcDLbHp8nV9lChoBkdAYfKxptaY/mgHTegDaAhHQKA6l8UmD151fZQoaAZHQGdSXmvGIbhoB03oA2gIR0CgO50TURWcdX2UKGgGR0Bl2a5LAYYSaAdN6ANoCEdAoDvmerdWQ3V9lChoBkdAZN2qjrRjSWgHTegDaAhHQKBCXNB4Uvh1fZQoaAZHQGJt6gmJFb5oB03oA2gIR0CgTbfrSmZWdX2UKGgGR0Bl84yKvV3EaAdN6ANoCEdAoE7icqe9SXV9lChoBkdAZqTtOVPepGgHTegDaAhHQKBRXhIe5nV1fZQoaAZHQGWVsXSBshxoB03oA2gIR0CgVbQCr92pdX2UKGgGR0BdnkliSaE0aAdN6ANoCEdAoFi7ABT4tnV9lChoBkdAaVMJTl1bJWgHTegDaAhHQKBbV1fVqet1fZQoaAZHQGLXUiILw4NoB03oA2gIR0CgW/7Y02tMdX2UKGgGR0Bj9gsXizcAaAdN6ANoCEdAoF4Z+pfhM3V9lChoBkdAYnTck+otMGgHTegDaAhHQKBes9xp+MJ1fZQoaAZHQGLLbGm1pkBoB03oA2gIR0CgX0MMAmzCdX2UKGgGR0BhrJS3solVaAdN6ANoCEdAoGDsv/R3NnV9lChoBkdAYRM8tf5ULmgHTegDaAhHQKBhuhxo7FN1fZQoaAZHQGd30gB91EFoB03oA2gIR0CgZUbuDzy0dX2UKGgGR0BmvXRsuWa+aAdN6ANoCEdAoGZZDCxeLXV9lChoBkdAY1KYx+KCQWgHTegDaAhHQKBmqwqy4Wl1fZQoaAZHQGLGp9qk/KRoB03oA2gIR0Cgb/LofSx8dX2UKGgGR0BiUua+evpyaAdN6ANoCEdAoHrG8CgbqHV9lChoBkdAYlDlMh5gPWgHTegDaAhHQKB7rlJYkmh1fZQoaAZHQGEOFtKqXF9oB03oA2gIR0CgfYyj59E1dX2UKGgGR0BlZ1/rjYI0aAdN6ANoCEdAoIHzPldTpHV9lChoBkdAcdQmce8wpWgHTZ8CaAhHQKCDJ6xgRbt1fZQoaAZHQGiWlzEJjUdoB03oA2gIR0CghUe4kNWmdX2UKGgGR0BmSgIMSbpeaAdN6ANoCEdAoIkOEsasIXV9lChoBkdAY0e7J4jbBWgHTegDaAhHQKCJ6vzOHFh1fZQoaAZHQGJdWgWac7RoB03oA2gIR0CgjRKEeyRkdX2UKGgGR0Bk2rxXnyNGaAdN6ANoCEdAoI34e1a4c3V9lChoBkdAY47HbypaR2gHTegDaAhHQKCO0WXTmXB1fZQoaAZHQGGff+sHSndoB03oA2gIR0CgkXW/8EV4dX2UKGgGR0Bga8hq0tyxaAdN6ANoCEdAoJUNoJzDGnV9lChoBkdAYjsSJTER8WgHTegDaAhHQKCWFpjc2zh1fZQoaAZHQHBe41xbSqloB03oA2gIR0CglmJvHcUNdX2UKGgGR0BxbkGX5WRzaAdNwwFoCEdAoJjj4nF5wHV9lChoBkdAXUH/tIClrWgHTegDaAhHQKCcfbKRuCR1fZQoaAZHQHIOMDr7fpFoB03wAWgIR0CgnkpgTh5xdX2UKGgGR0BctWugYgq3aAdN6ANoCEdAoJ5UGRmseXVlLg=="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 248,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:10714ef7a007d3aa726fe6d4d141d075705aaa0018f72b60b07637a3259e0d19
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d0450b6ca71f6f719a4cfa4a09fc1e15db7194dfeac13411adec2a2d0c347a72
|
3 |
+
size 43329
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.10.11
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.0.0+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (193 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 252.63552510631015, "std_reward": 25.2820615147989, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-12T02:26:56.513932"}
|