|
import contextlib
|
|
import inspect
|
|
from typing import Any, Dict, List, Optional, Union, get_args
|
|
|
|
import numpy as np
|
|
import torch
|
|
import torch.nn.functional as F
|
|
import torchvision.transforms.functional as TF
|
|
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
|
|
from diffusers.loaders import FromSingleFileMixin
|
|
from diffusers.models.transformers import Transformer2DModel
|
|
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import (
|
|
rescale_noise_cfg,
|
|
retrieve_timesteps,
|
|
)
|
|
from diffusers.schedulers import KarrasDiffusionSchedulers
|
|
from diffusers.utils import (
|
|
BaseOutput,
|
|
deprecate,
|
|
logging,
|
|
)
|
|
from diffusers.utils.torch_utils import randn_tensor
|
|
from PIL import (
|
|
Image,
|
|
Jpeg2KImagePlugin,
|
|
JpegImagePlugin,
|
|
PngImagePlugin,
|
|
TiffImagePlugin,
|
|
)
|
|
from transformers import (
|
|
CLIPImageProcessor,
|
|
CLIPTextModel,
|
|
CLIPTokenizer,
|
|
CLIPVisionModel,
|
|
)
|
|
|
|
from diffusers import AutoencoderKL, DiffusionPipeline, UNet2DConditionModel
|
|
|
|
logger = logging.get_logger(__name__)
|
|
from dataclasses import dataclass
|
|
|
|
ImageInput = Union[
|
|
PipelineImageInput,
|
|
JpegImagePlugin.JpegImageFile,
|
|
Jpeg2KImagePlugin.Jpeg2KImageFile,
|
|
PngImagePlugin.PngImageFile,
|
|
TiffImagePlugin.TiffImageFile,
|
|
]
|
|
|
|
import math
|
|
|
|
|
|
def postprocess(
|
|
image: torch.FloatTensor,
|
|
output_type: str = "pil",
|
|
):
|
|
"""
|
|
Postprocess the image output from tensor to `output_type`.
|
|
|
|
Args:
|
|
image (`torch.FloatTensor`):
|
|
The image input, should be a pytorch tensor with shape `B x C x H x W`.
|
|
output_type (`str`, *optional*, defaults to `pil`):
|
|
The output type of the image, can be one of `pil`, `np`, `pt`, `latent`.
|
|
|
|
Returns:
|
|
`PIL.Image.Image`, `np.ndarray` or `torch.FloatTensor`:
|
|
The postprocessed image.
|
|
"""
|
|
if not isinstance(image, torch.Tensor):
|
|
raise ValueError(
|
|
f"Input for postprocessing is in incorrect format: {type(image)}. We only support pytorch tensor"
|
|
)
|
|
if output_type not in ["latent", "pt", "np", "pil"]:
|
|
deprecation_message = (
|
|
f"the output_type {output_type} is outdated and has been set to `np`. Please make sure to set it to one of these instead: "
|
|
"`pil`, `np`, `pt`, `latent`"
|
|
)
|
|
deprecate(
|
|
"Unsupported output_type", "1.0.0", deprecation_message, standard_warn=False
|
|
)
|
|
output_type = "np"
|
|
|
|
image = image.detach().cpu()
|
|
image = image.to(torch.float32)
|
|
|
|
if output_type == "latent":
|
|
return image
|
|
|
|
|
|
image = image * 0.5 + 0.5
|
|
|
|
materials = []
|
|
for i in range(image.shape[0]):
|
|
|
|
material = StableMaterialsMaterial()
|
|
material.init_from_tensor(image[i], mode=output_type)
|
|
|
|
materials.append(material)
|
|
|
|
return materials
|
|
|
|
|
|
@dataclass
|
|
class StableMaterialsMaterial:
|
|
basecolor: torch.FloatTensor
|
|
normal: torch.FloatTensor
|
|
height: torch.FloatTensor
|
|
roughness: torch.FloatTensor
|
|
metallic: torch.FloatTensor
|
|
_mode: str = "tensor"
|
|
|
|
def __init__(
|
|
self,
|
|
basecolor: Optional[Union[Image.Image, np.ndarray, torch.FloatTensor]] = None,
|
|
normal: Optional[Union[Image.Image, np.ndarray, torch.FloatTensor]] = None,
|
|
height: Optional[Union[Image.Image, np.ndarray, torch.FloatTensor]] = None,
|
|
roughness: Optional[Union[Image.Image, np.ndarray, torch.FloatTensor]] = None,
|
|
metallic: Optional[Union[Image.Image, np.ndarray, torch.FloatTensor]] = None,
|
|
mode: str = "tensor",
|
|
):
|
|
self._basecolor = self._to_pt(basecolor)
|
|
self._normal = self._to_pt(normal)
|
|
self._height = self._to_pt(height)
|
|
self._roughness = self._to_pt(roughness)
|
|
self._metallic = self._to_pt(metallic)
|
|
self._mode = mode
|
|
|
|
def init_from_tensor(self, image: torch.FloatTensor, mode: str = "tensor"):
|
|
assert image.shape[0] >= 8, "Input tensor should have at least 8 channels"
|
|
self._basecolor = image[:3].clamp(0, 1)
|
|
self._normal = self.compute_normal_map_z_component(image[3:5])
|
|
self._height = image[5:6].clamp(0, 1)
|
|
self._roughness = image[6:7].clamp(0, 1)
|
|
self._metallic = image[7:8].clamp(0, 1)
|
|
self._mode = mode
|
|
|
|
def resize(self, size, antialias=True):
|
|
self._basecolor = TF.resize(self._basecolor, size, antialias=antialias)
|
|
self._normal = TF.resize(self._normal, size, antialias=antialias)
|
|
self._height = TF.resize(self._height, size, antialias=antialias)
|
|
self._roughness = TF.resize(self._roughness, size, antialias=antialias)
|
|
self._metallic = TF.resize(self._metallic, size, antialias=antialias)
|
|
return self
|
|
|
|
def tile(self, num_tiles):
|
|
self._basecolor = self._basecolor.repeat(1, num_tiles, num_tiles)
|
|
self._normal = self._normal.repeat(1, num_tiles, num_tiles)
|
|
self._height = self._height.repeat(1, num_tiles, num_tiles)
|
|
self._roughness = self._roughness.repeat(1, num_tiles, num_tiles)
|
|
self._metallic = self._metallic.repeat(1, num_tiles, num_tiles)
|
|
return self
|
|
|
|
def _to_numpy(self, image: torch.FloatTensor):
|
|
if image is None:
|
|
return None
|
|
return image.numpy()
|
|
|
|
def _to_pil(self, image: torch.FloatTensor, mode: str = "RGB"):
|
|
if image is None:
|
|
return None
|
|
return TF.to_pil_image(image).convert(mode)
|
|
|
|
def _to_pt(self, image):
|
|
if image is None:
|
|
return None
|
|
if isinstance(image, np.ndarray):
|
|
image = torch.from_numpy(image)
|
|
elif isinstance(image, Image.Image):
|
|
image = TF.to_tensor(image)
|
|
return image.cpu()
|
|
|
|
def compute_normal_map_z_component(self, normal: torch.FloatTensor):
|
|
normal = normal * 2 - 1
|
|
sum_sq = (normal**2).sum(dim=0, keepdim=True)[0]
|
|
z = torch.zeros_like(sum_sq)
|
|
mask = sum_sq <= 1
|
|
z[mask] = torch.sqrt(1 - sum_sq[mask])
|
|
mask_outlier = sum_sq > 1
|
|
scale_factor = torch.sqrt(sum_sq[mask_outlier])
|
|
normal[:, mask_outlier] = normal[:, mask_outlier] / scale_factor
|
|
normal = torch.cat([normal, z.unsqueeze(0)], dim=0)
|
|
normal = normal * 0.5 + 0.5
|
|
return normal.clamp(0, 1)
|
|
|
|
def _convert(self, image, mode="RGB"):
|
|
if self._mode == "numpy":
|
|
return self._to_numpy(image)
|
|
elif self._mode == "pil":
|
|
return self._to_pil(image, mode)
|
|
return image
|
|
|
|
@property
|
|
def size(self):
|
|
return list(self._basecolor.shape[-2:])
|
|
|
|
@property
|
|
def basecolor(self):
|
|
return self._convert(self._basecolor, mode="RGB")
|
|
|
|
@property
|
|
def normal(self):
|
|
return self._convert(self._normal, mode="RGB")
|
|
|
|
@property
|
|
def height(self):
|
|
return self._convert(self._height, mode="L")
|
|
|
|
@property
|
|
def roughness(self):
|
|
return self._convert(self._roughness, mode="L")
|
|
|
|
@property
|
|
def metallic(self):
|
|
return self._convert(self._metallic, mode="L")
|
|
|
|
def as_dict(self):
|
|
return {
|
|
"basecolor": self.basecolor,
|
|
"normal": self.normal,
|
|
"height": self.height,
|
|
"roughness": self.roughness,
|
|
"metallic": self.metallic,
|
|
}
|
|
|
|
def as_list(self):
|
|
return [
|
|
self.basecolor,
|
|
self.normal,
|
|
self.height,
|
|
self.roughness,
|
|
self.metallic,
|
|
]
|
|
|
|
def as_tensor(self):
|
|
return torch.cat(
|
|
[
|
|
self._basecolor,
|
|
self._normal[:2],
|
|
self._height,
|
|
self._roughness,
|
|
self._metallic,
|
|
],
|
|
dim=0,
|
|
)
|
|
|
|
|
|
@dataclass
|
|
class StableMaterialsPipelineOutput(BaseOutput):
|
|
"""
|
|
Output class for Stable Diffusion pipelines.
|
|
|
|
Args:
|
|
images (`List[PIL.Image.Image]` or `np.ndarray`)
|
|
List of denoised PIL images of length `batch_size` or NumPy array of shape `(batch_size, height, width,
|
|
num_channels)`.
|
|
"""
|
|
|
|
images: List[StableMaterialsMaterial]
|
|
|
|
|
|
def patch(x, patch_factor=2):
|
|
if isinstance(x, (list, tuple)):
|
|
pass
|
|
|
|
b, c, h, w = x.shape
|
|
patch_size = h // patch_factor
|
|
|
|
x = x.unfold(2, patch_size, patch_size).unfold(3, patch_size, patch_size)
|
|
x = x.permute(0, 2, 3, 1, 4, 5).contiguous().view(-1, c, patch_size, patch_size)
|
|
|
|
n_patches = x.shape[0] // b
|
|
|
|
return x, (b, h), n_patches, patch_size
|
|
|
|
|
|
def unpatch(x, b, h, n_patches, patch_size=32):
|
|
if isinstance(x, (list, tuple)):
|
|
if len(x) == 1:
|
|
x = x[0]
|
|
else:
|
|
pass
|
|
|
|
factor = patch_size / x.shape[-1]
|
|
h, w = int(h / factor), int(h / factor)
|
|
|
|
c, patch_size = x.shape[1], x.shape[2]
|
|
n_patches = x.shape[0] // b
|
|
|
|
x = x.reshape(b, n_patches, c, patch_size, patch_size)
|
|
x = x.permute(0, 2, 3, 4, 1).contiguous().view(b, c * patch_size * patch_size, -1)
|
|
|
|
x = F.fold(
|
|
x,
|
|
output_size=(h, w),
|
|
kernel_size=patch_size,
|
|
stride=patch_size,
|
|
)
|
|
|
|
return x
|
|
|
|
|
|
def roll(x):
|
|
roll_h = torch.randint(0, 256, (1,)).item() // 2 * 2
|
|
roll_w = torch.randint(0, 256, (1,)).item() // 2 * 2
|
|
|
|
x = torch.roll(x, shifts=(roll_h, roll_w), dims=(2, 3))
|
|
|
|
return x, (roll_h, roll_w)
|
|
|
|
|
|
def unroll(x, roll_h, roll_w, factor=1.0):
|
|
roll_h = int(roll_h * factor)
|
|
roll_w = int(roll_w * factor)
|
|
x = torch.roll(x, shifts=(-roll_h, -roll_w), dims=(2, 3))
|
|
return x
|
|
|
|
|
|
@contextlib.contextmanager
|
|
def rolled_conv(enabled=True):
|
|
conv = torch.nn.Conv2d
|
|
|
|
if enabled:
|
|
|
|
orig_forward = conv.forward
|
|
|
|
def forward(self, x, *args, **kwargs):
|
|
x, (roll_h, roll_w) = roll(x)
|
|
|
|
pad = 4
|
|
x = F.pad(x, (pad, pad, pad, pad), mode="circular")
|
|
h = x.shape[-2]
|
|
|
|
x = orig_forward(self, x, *args, **kwargs)
|
|
h1 = x.shape[-2]
|
|
factor = h1 / h
|
|
|
|
pad = int(pad * factor)
|
|
x = x[..., pad:-pad, pad:-pad]
|
|
x = unroll(x, roll_h, roll_w, factor)
|
|
|
|
return x
|
|
|
|
|
|
conv.forward = forward
|
|
|
|
yield conv
|
|
|
|
|
|
conv.forward = orig_forward
|
|
else:
|
|
|
|
yield conv
|
|
|
|
|
|
@contextlib.contextmanager
|
|
def tiled_attn(enabled=True, scale_multiplier=4):
|
|
conv = Transformer2DModel
|
|
|
|
if enabled:
|
|
|
|
orig_forward = conv.forward
|
|
|
|
|
|
def forward(self, hidden_states, encoder_hidden_states, *args, **kwargs):
|
|
hidden_states, (roll_h, roll_w) = roll(hidden_states)
|
|
hidden_states, (b, h), n_patches, patch_size = patch(
|
|
hidden_states, self.scale_multiplier
|
|
)
|
|
encoder_hidden_states = encoder_hidden_states.repeat_interleave(
|
|
n_patches, dim=0
|
|
)
|
|
chunks = math.ceil(len(hidden_states) / 8)
|
|
hidden_states = hidden_states.chunk(chunks, dim=0)
|
|
encoder_hidden_states = encoder_hidden_states.chunk(chunks, dim=0)
|
|
result = []
|
|
for i in range(chunks):
|
|
result.append(
|
|
orig_forward(
|
|
self,
|
|
hidden_states[i],
|
|
encoder_hidden_states[i],
|
|
*args,
|
|
**kwargs,
|
|
)[0]
|
|
)
|
|
hidden_states = torch.cat(result, dim=0)
|
|
hidden_states = unpatch(hidden_states, b, h, n_patches, patch_size)
|
|
hidden_states = unroll(hidden_states, roll_h, roll_w)
|
|
return (hidden_states,)
|
|
|
|
|
|
conv.scale_multiplier = scale_multiplier
|
|
conv.forward = forward
|
|
yield conv
|
|
|
|
|
|
conv.forward = orig_forward
|
|
else:
|
|
|
|
yield conv
|
|
|
|
|
|
class StableMaterialsPipeline(DiffusionPipeline, FromSingleFileMixin):
|
|
|
|
model_cpu_offload_seq = "prompt_encoder->unet->vae"
|
|
|
|
def __init__(
|
|
self,
|
|
vae: AutoencoderKL,
|
|
unet: UNet2DConditionModel,
|
|
|
|
scheduler: KarrasDiffusionSchedulers,
|
|
text_encoder: CLIPTextModel,
|
|
tokenizer: CLIPTokenizer,
|
|
vision_encoder: CLIPVisionModel,
|
|
processor: CLIPImageProcessor,
|
|
):
|
|
super().__init__()
|
|
|
|
self.register_modules(
|
|
vae=vae,
|
|
unet=unet,
|
|
|
|
scheduler=scheduler,
|
|
|
|
tokenizer=tokenizer,
|
|
processor=processor,
|
|
text_encoder=text_encoder,
|
|
vision_encoder=vision_encoder,
|
|
)
|
|
|
|
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
|
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
|
|
|
def enable_vae_slicing(self):
|
|
r"""
|
|
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
|
|
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
|
|
"""
|
|
self.vae.enable_slicing()
|
|
|
|
def disable_vae_slicing(self):
|
|
r"""
|
|
Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
|
|
computing decoding in one step.
|
|
"""
|
|
self.vae.disable_slicing()
|
|
|
|
def enable_vae_tiling(self):
|
|
r"""
|
|
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
|
|
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
|
|
processing larger images.
|
|
"""
|
|
self.vae.enable_tiling()
|
|
|
|
def disable_vae_tiling(self):
|
|
r"""
|
|
Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
|
|
computing decoding in one step.
|
|
"""
|
|
self.vae.disable_tiling()
|
|
|
|
def __encode_text(self, text):
|
|
inputs = self.tokenizer(text, padding=True, return_tensors="pt")
|
|
inputs["input_ids"] = inputs["input_ids"].to(self.device)
|
|
inputs["attention_mask"] = inputs["attention_mask"].to(self.device)
|
|
outputs = self.text_encoder(**inputs)
|
|
return outputs.text_embeds.unsqueeze(1)
|
|
|
|
def __encode_image(self, image):
|
|
inputs = self.processor(images=image, return_tensors="pt")
|
|
inputs["pixel_values"] = inputs["pixel_values"].to(self.device)
|
|
outputs = self.vision_encoder(**inputs)
|
|
return outputs.image_embeds.unsqueeze(1)
|
|
|
|
def __encode_prompt(
|
|
self,
|
|
prompt,
|
|
):
|
|
if type(prompt) != list:
|
|
prompt = [prompt]
|
|
|
|
embs = []
|
|
for prompt in prompt:
|
|
if isinstance(prompt, str):
|
|
embs.append(self.__encode_text(prompt))
|
|
elif type(prompt) in get_args(ImageInput):
|
|
embs.append(self.__encode_image(prompt))
|
|
else:
|
|
raise NotImplementedError
|
|
|
|
return torch.cat(embs, dim=0)
|
|
|
|
def encode_prompt(
|
|
self,
|
|
prompt,
|
|
device,
|
|
num_images_per_prompt,
|
|
do_classifier_free_guidance,
|
|
negative_prompt=None,
|
|
prompt_embeds: Optional[torch.FloatTensor] = None,
|
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
|
):
|
|
r"""
|
|
Encodes the prompt into text encoder hidden states.
|
|
|
|
Args:
|
|
prompt (`str` or `List[str]`, *optional*):
|
|
prompt to be encoded
|
|
device: (`torch.device`):
|
|
torch device
|
|
num_images_per_prompt (`int`):
|
|
number of images that should be generated per prompt
|
|
do_classifier_free_guidance (`bool`):
|
|
whether to use classifier free guidance or not
|
|
negative_prompt (`str` or `List[str]`, *optional*):
|
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
|
less than `1`).
|
|
prompt_embeds (`torch.FloatTensor`, *optional*):
|
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
|
provided, text embeddings will be generated from `prompt` input argument.
|
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
|
argument.
|
|
"""
|
|
if (
|
|
prompt is not None
|
|
and isinstance(prompt, str)
|
|
or isinstance(prompt, Image.Image)
|
|
):
|
|
batch_size = 1
|
|
elif prompt is not None and isinstance(prompt, list):
|
|
batch_size = len(prompt)
|
|
else:
|
|
batch_size = prompt_embeds.shape[0]
|
|
|
|
if prompt_embeds is None:
|
|
prompt_embeds = self.__encode_prompt(prompt)
|
|
|
|
if self.unet is not None:
|
|
prompt_embeds_dtype = self.unet.dtype
|
|
else:
|
|
prompt_embeds_dtype = prompt_embeds.dtype
|
|
|
|
prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
|
|
|
|
bs_embed, seq_len, _ = prompt_embeds.shape
|
|
|
|
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
|
prompt_embeds = prompt_embeds.view(
|
|
bs_embed * num_images_per_prompt, seq_len, -1
|
|
)
|
|
|
|
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
|
uncond_tokens: List[str]
|
|
if negative_prompt is None:
|
|
|
|
uncond_tokens = [Image.new("RGB", (512, 512), (0, 0, 0))] * batch_size
|
|
elif isinstance(negative_prompt, str):
|
|
uncond_tokens = [negative_prompt] * batch_size
|
|
elif len(negative_prompt) != batch_size:
|
|
raise ValueError(
|
|
"The `negative_prompt` must be a string, a list of strings of length `batch_size`, or `None`."
|
|
)
|
|
else:
|
|
uncond_tokens = negative_prompt
|
|
|
|
negative_prompt_embeds = self.__encode_prompt(uncond_tokens)
|
|
|
|
|
|
if do_classifier_free_guidance:
|
|
|
|
seq_len = negative_prompt_embeds.shape[1]
|
|
|
|
negative_prompt_embeds = negative_prompt_embeds.to(
|
|
dtype=prompt_embeds_dtype, device=device
|
|
)
|
|
|
|
negative_prompt_embeds = negative_prompt_embeds.repeat(
|
|
1, num_images_per_prompt, 1
|
|
)
|
|
negative_prompt_embeds = negative_prompt_embeds.view(
|
|
batch_size * num_images_per_prompt, seq_len, -1
|
|
)
|
|
|
|
return prompt_embeds, negative_prompt_embeds
|
|
|
|
def decode_latents(self, latents):
|
|
deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead"
|
|
deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False)
|
|
|
|
latents = 1 / self.vae.config.scaling_factor * latents
|
|
image = self.vae.decode(latents, return_dict=False)[0]
|
|
image = (image / 2 + 0.5).clamp(0, 1)
|
|
|
|
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
|
|
return image
|
|
|
|
def prepare_extra_step_kwargs(self, generator, eta):
|
|
|
|
|
|
|
|
|
|
|
|
accepts_eta = "eta" in set(
|
|
inspect.signature(self.scheduler.step).parameters.keys()
|
|
)
|
|
extra_step_kwargs = {}
|
|
if accepts_eta:
|
|
extra_step_kwargs["eta"] = eta
|
|
|
|
|
|
accepts_generator = "generator" in set(
|
|
inspect.signature(self.scheduler.step).parameters.keys()
|
|
)
|
|
if accepts_generator:
|
|
extra_step_kwargs["generator"] = generator
|
|
return extra_step_kwargs
|
|
|
|
def check_inputs(
|
|
self,
|
|
prompt,
|
|
height,
|
|
width,
|
|
negative_prompt=None,
|
|
prompt_embeds=None,
|
|
negative_prompt_embeds=None,
|
|
):
|
|
if height % 8 != 0 or width % 8 != 0:
|
|
raise ValueError(
|
|
f"`height` and `width` have to be divisible by 8 but are {height} and {width}."
|
|
)
|
|
|
|
if prompt is not None and prompt_embeds is not None:
|
|
raise ValueError(
|
|
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
|
" only forward one of the two."
|
|
)
|
|
elif prompt is None and prompt_embeds is None:
|
|
raise ValueError(
|
|
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
|
)
|
|
elif prompt is not None and (not isinstance(prompt, (str, list, Image.Image))):
|
|
raise ValueError(
|
|
f"`prompt` has to be of type `str` or `list` but is {type(prompt)}"
|
|
)
|
|
|
|
if negative_prompt is not None and negative_prompt_embeds is not None:
|
|
raise ValueError(
|
|
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
|
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
|
)
|
|
|
|
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
|
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
|
raise ValueError(
|
|
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
|
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
|
f" {negative_prompt_embeds.shape}."
|
|
)
|
|
|
|
def prepare_latents(
|
|
self,
|
|
batch_size,
|
|
num_channels_latents,
|
|
height,
|
|
width,
|
|
dtype,
|
|
device,
|
|
generator,
|
|
latents=None,
|
|
):
|
|
shape = (
|
|
batch_size,
|
|
num_channels_latents,
|
|
height // self.vae_scale_factor,
|
|
width // self.vae_scale_factor,
|
|
)
|
|
if isinstance(generator, list) and len(generator) != batch_size:
|
|
raise ValueError(
|
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
|
)
|
|
|
|
if latents is None:
|
|
latents = randn_tensor(
|
|
shape, generator=generator, device=device, dtype=dtype
|
|
)
|
|
else:
|
|
latents = latents.to(device)
|
|
|
|
|
|
latents = latents * self.scheduler.init_noise_sigma
|
|
return latents
|
|
|
|
def enable_freeu(self, s1: float, s2: float, b1: float, b2: float):
|
|
r"""Enables the FreeU mechanism as in https://arxiv.org/abs/2309.11497.
|
|
|
|
The suffixes after the scaling factors represent the stages where they are being applied.
|
|
|
|
Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of the values
|
|
that are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.
|
|
|
|
Args:
|
|
s1 (`float`):
|
|
Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
|
|
mitigate "oversmoothing effect" in the enhanced denoising process.
|
|
s2 (`float`):
|
|
Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to
|
|
mitigate "oversmoothing effect" in the enhanced denoising process.
|
|
b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
|
|
b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
|
|
"""
|
|
if not hasattr(self, "unet"):
|
|
raise ValueError("The pipeline must have `unet` for using FreeU.")
|
|
self.unet.enable_freeu(s1=s1, s2=s2, b1=b1, b2=b2)
|
|
|
|
def disable_freeu(self):
|
|
"""Disables the FreeU mechanism if enabled."""
|
|
self.unet.disable_freeu()
|
|
|
|
|
|
def get_guidance_scale_embedding(self, w, embedding_dim=512, dtype=torch.float32):
|
|
"""
|
|
See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
|
|
|
|
Args:
|
|
timesteps (`torch.Tensor`):
|
|
generate embedding vectors at these timesteps
|
|
embedding_dim (`int`, *optional*, defaults to 512):
|
|
dimension of the embeddings to generate
|
|
dtype:
|
|
data type of the generated embeddings
|
|
|
|
Returns:
|
|
`torch.FloatTensor`: Embedding vectors with shape `(len(timesteps), embedding_dim)`
|
|
"""
|
|
assert len(w.shape) == 1
|
|
w = w * 1000.0
|
|
|
|
half_dim = embedding_dim // 2
|
|
emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
|
|
emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
|
|
emb = w.to(dtype)[:, None] * emb[None, :]
|
|
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
|
|
if embedding_dim % 2 == 1:
|
|
emb = torch.nn.functional.pad(emb, (0, 1))
|
|
assert emb.shape == (w.shape[0], embedding_dim)
|
|
return emb
|
|
|
|
@property
|
|
def guidance_scale(self):
|
|
return self._guidance_scale
|
|
|
|
@property
|
|
def guidance_rescale(self):
|
|
return self._guidance_rescale
|
|
|
|
|
|
|
|
|
|
@property
|
|
def do_classifier_free_guidance(self):
|
|
return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None
|
|
|
|
@property
|
|
def cross_attention_kwargs(self):
|
|
return self._cross_attention_kwargs
|
|
|
|
@property
|
|
def num_timesteps(self):
|
|
return self._num_timesteps
|
|
|
|
@property
|
|
def interrupt(self):
|
|
return self._interrupt
|
|
|
|
@torch.no_grad()
|
|
|
|
def __call__(
|
|
self,
|
|
prompt: Union[
|
|
str, List[str], PipelineImageInput, List[PipelineImageInput]
|
|
] = None,
|
|
height: Optional[int] = None,
|
|
width: Optional[int] = None,
|
|
tileable: bool = False,
|
|
patched: bool = False,
|
|
num_inference_steps: int = 50,
|
|
timesteps: List[int] = None,
|
|
guidance_scale: float = 7.5,
|
|
negative_prompt: Optional[Union[str, List[str]]] = None,
|
|
num_images_per_prompt: Optional[int] = 1,
|
|
eta: float = 0.0,
|
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
|
latents: Optional[torch.FloatTensor] = None,
|
|
prompt_embeds: Optional[torch.FloatTensor] = None,
|
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
|
output_type: Optional[str] = "pil",
|
|
return_dict: bool = True,
|
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
|
guidance_rescale: float = 0.0,
|
|
**kwargs,
|
|
):
|
|
|
|
|
|
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
|
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
|
|
|
|
|
self.check_inputs(
|
|
prompt,
|
|
height,
|
|
width,
|
|
negative_prompt,
|
|
prompt_embeds,
|
|
negative_prompt_embeds,
|
|
)
|
|
|
|
self._guidance_scale = guidance_scale
|
|
self._guidance_rescale = guidance_rescale
|
|
self._cross_attention_kwargs = cross_attention_kwargs
|
|
self._interrupt = False
|
|
|
|
|
|
if prompt is not None and (
|
|
isinstance(prompt, str) or isinstance(prompt, Image.Image)
|
|
):
|
|
batch_size = 1
|
|
elif prompt is not None and isinstance(prompt, list):
|
|
batch_size = len(prompt)
|
|
else:
|
|
batch_size = prompt_embeds.shape[0]
|
|
|
|
device = self._execution_device
|
|
|
|
|
|
prompt_embeds, negative_prompt_embeds = self.encode_prompt(
|
|
prompt,
|
|
device,
|
|
num_images_per_prompt,
|
|
self.do_classifier_free_guidance,
|
|
negative_prompt,
|
|
prompt_embeds=prompt_embeds,
|
|
negative_prompt_embeds=negative_prompt_embeds,
|
|
)
|
|
|
|
|
|
|
|
|
|
if self.do_classifier_free_guidance:
|
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
|
|
|
|
|
timesteps, num_inference_steps = retrieve_timesteps(
|
|
self.scheduler, num_inference_steps, device, timesteps
|
|
)
|
|
|
|
|
|
num_channels_latents = self.unet.config.in_channels
|
|
latents = self.prepare_latents(
|
|
batch_size * num_images_per_prompt,
|
|
num_channels_latents,
|
|
height,
|
|
width,
|
|
prompt_embeds.dtype,
|
|
device,
|
|
generator,
|
|
latents,
|
|
)
|
|
|
|
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
|
|
|
|
|
timestep_cond = None
|
|
if self.unet.config.time_cond_proj_dim is not None:
|
|
guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(
|
|
batch_size * num_images_per_prompt
|
|
)
|
|
timestep_cond = self.get_guidance_scale_embedding(
|
|
guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
|
|
).to(device=device, dtype=latents.dtype)
|
|
|
|
|
|
self._num_timesteps = len(timesteps)
|
|
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
|
for i, t in enumerate(timesteps):
|
|
if self.interrupt:
|
|
continue
|
|
|
|
|
|
latent_model_input = (
|
|
torch.cat([latents] * 2)
|
|
if self.do_classifier_free_guidance
|
|
else latents
|
|
)
|
|
latent_model_input = self.scheduler.scale_model_input(
|
|
latent_model_input, t
|
|
)
|
|
|
|
scale_multiplier = (
|
|
latent_model_input.shape[-1]
|
|
) // self.unet.config.sample_size
|
|
|
|
past_mid = i >= len(timesteps) // 4
|
|
|
|
with rolled_conv(enabled=(tileable & past_mid)):
|
|
with tiled_attn(enabled=patched, scale_multiplier=scale_multiplier):
|
|
noise_pred = self.unet(
|
|
latent_model_input,
|
|
t,
|
|
encoder_hidden_states=prompt_embeds,
|
|
timestep_cond=timestep_cond,
|
|
cross_attention_kwargs=self.cross_attention_kwargs,
|
|
return_dict=False,
|
|
)[0]
|
|
|
|
|
|
if self.do_classifier_free_guidance:
|
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
|
noise_pred = noise_pred_uncond + self.guidance_scale * (
|
|
noise_pred_text - noise_pred_uncond
|
|
)
|
|
|
|
if self.do_classifier_free_guidance and self.guidance_rescale > 0.0:
|
|
|
|
noise_pred = rescale_noise_cfg(
|
|
noise_pred,
|
|
noise_pred_text,
|
|
guidance_rescale=self.guidance_rescale,
|
|
)
|
|
|
|
|
|
latents = self.scheduler.step(
|
|
noise_pred, t, latents, **extra_step_kwargs, return_dict=False
|
|
)[0]
|
|
|
|
|
|
if i == len(timesteps) - 1 or (i + 1) % self.scheduler.order == 0:
|
|
progress_bar.update()
|
|
|
|
if not output_type == "latent":
|
|
if tileable:
|
|
|
|
l_height = height // self.vae_scale_factor
|
|
l_width = width // self.vae_scale_factor
|
|
pad = l_height // 4
|
|
latents = TF.center_crop(
|
|
latents.repeat(1, 1, 3, 3), (l_height + pad, l_width + pad)
|
|
)
|
|
|
|
|
|
image = self.vae.decode(
|
|
latents / self.vae.config.scaling_factor,
|
|
return_dict=False,
|
|
generator=generator,
|
|
)[0]
|
|
|
|
|
|
image = TF.center_crop(image, (height, width))
|
|
else:
|
|
image = latents
|
|
|
|
image = postprocess(image, output_type=output_type)
|
|
|
|
|
|
self.maybe_free_model_hooks()
|
|
|
|
if not return_dict:
|
|
return image
|
|
|
|
return StableMaterialsPipelineOutput(images=image)
|
|
|