utils: add evaluator script
Browse files- evaluator.py +43 -0
evaluator.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
|
3 |
+
from datasets import load_dataset
|
4 |
+
from transformers import TrainingArguments
|
5 |
+
from span_marker import SpanMarkerModel, Trainer
|
6 |
+
|
7 |
+
|
8 |
+
# Load the dataset, ensure "tokens" and "ner_tags" columns, and get a list of labels
|
9 |
+
dataset = load_dataset("gwlms/germeval2014")
|
10 |
+
labels = dataset["train"].features["ner_tags"].feature.names
|
11 |
+
|
12 |
+
# Initialize a SpanMarker model using a pretrained BERT-style encoder
|
13 |
+
model_name = sys.argv[1]
|
14 |
+
model = SpanMarkerModel.from_pretrained(
|
15 |
+
model_name,
|
16 |
+
labels=labels,
|
17 |
+
# SpanMarker hyperparameters:
|
18 |
+
model_max_length=256,
|
19 |
+
marker_max_length=128,
|
20 |
+
entity_max_length=8,
|
21 |
+
)
|
22 |
+
|
23 |
+
args = TrainingArguments(
|
24 |
+
output_dir="/tmp",
|
25 |
+
per_device_eval_batch_size=64,
|
26 |
+
)
|
27 |
+
|
28 |
+
# Initialize the trainer using our model, training args & dataset, and train
|
29 |
+
trainer = Trainer(
|
30 |
+
model=model,
|
31 |
+
args=args,
|
32 |
+
train_dataset=dataset["train"],
|
33 |
+
eval_dataset=dataset["validation"],
|
34 |
+
)
|
35 |
+
|
36 |
+
|
37 |
+
print("Evaluating on development set...")
|
38 |
+
dev_metrics = trainer.evaluate(dataset["validation"], metric_key_prefix="eval")
|
39 |
+
print(dev_metrics)
|
40 |
+
|
41 |
+
print("Evaluating on test set...")
|
42 |
+
test_metrics = trainer.evaluate(dataset["test"], metric_key_prefix="test")
|
43 |
+
print(test_metrics)
|