File size: 10,669 Bytes
06cc4a3
 
 
 
 
 
 
 
 
 
 
 
 
e8d5023
06cc4a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
---
datasets:
- tiiuae/falcon-refinedweb
language:
- en
inference: false
license: apache-2.0
---

⚠️ **This is an unofficial fork of the original [Falcon-7B](https://huggingface.co/tiiuae/falcon-7b) model.**

The following changes have been made:
- Fixing generation configuration setting
- Model now properly uses specified ```attention_mask``` when calling ```scaled_dot_product_attention``` - this also allows to specify custom attention masks and work with left-padded input. However, this will disable additional memory and flash optimization.


# πŸš€ Falcon-7B

**Falcon-7B is a 7B parameters causal decoder-only model built by [TII](https://www.tii.ae) and trained on 1,500B tokens of [RefinedWeb](https://huggingface.co/datasets/tiiuae/falcon-refinedweb) enhanced with curated corpora. It is made available under the Apache 2.0 license.**

*Paper coming soon* 😊.

πŸ€— To get started with Falcon (inference, finetuning, quantization, etc.), we recommend reading [this great blogpost fron HF](https://huggingface.co/blog/falcon)!


## Why use Falcon-7B?

* **It outperforms comparable open-source models** (e.g., [MPT-7B](https://huggingface.co/mosaicml/mpt-7b), [StableLM](https://github.com/Stability-AI/StableLM), [RedPajama](https://huggingface.co/togethercomputer/RedPajama-INCITE-Base-7B-v0.1) etc.), thanks to being trained on 1,500B tokens of [RefinedWeb](https://huggingface.co/datasets/tiiuae/falcon-refinedweb) enhanced with curated corpora. See the [OpenLLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).
* **It features an architecture optimized for inference**, with FlashAttention ([Dao et al., 2022](https://arxiv.org/abs/2205.14135)) and multiquery ([Shazeer et al., 2019](https://arxiv.org/abs/1911.02150)). 
* **It is made available under a permissive Apache 2.0 license allowing for commercial use**, without any royalties or restrictions.

⚠️ **This is a raw, pretrained model, which should be further finetuned for most usecases.** If you are looking for a version better suited to taking generic instructions in a chat format, we recommend taking a look at [Falcon-7B-Instruct](https://huggingface.co/tiiuae/falcon-7b-instruct). 

πŸ”₯ **Looking for an even more powerful model?** [Falcon-40B](https://huggingface.co/tiiuae/falcon-40b) is Falcon-7B's big brother!

```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import transformers
import torch

model = "tiiuae/falcon-7b"

tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto",
)
sequences = pipeline(
   "Girafatron is obsessed with giraffes, the most glorious animal on the face of this Earth. Giraftron believes all other animals are irrelevant when compared to the glorious majesty of the giraffe.\nDaniel: Hello, Girafatron!\nGirafatron:",
    max_length=200,
    do_sample=True,
    top_k=10,
    num_return_sequences=1,
    eos_token_id=tokenizer.eos_token_id,
)
for seq in sequences:
    print(f"Result: {seq['generated_text']}")

```

πŸ’₯ **Falcon LLMs require PyTorch 2.0 for use with `transformers`!**

For fast inference with Falcon, check-out [Text Generation Inference](https://github.com/huggingface/text-generation-inference)! Read more in this [blogpost]((https://huggingface.co/blog/falcon). 

You will need **at least 16GB of memory** to swiftly run inference with Falcon-7B.

# Model Card for Falcon-7B

## Model Details

### Model Description

- **Developed by:** [https://www.tii.ae](https://www.tii.ae);
- **Model type:** Causal decoder-only;
- **Language(s) (NLP):** English and French;
- **License:** Apache 2.0.

### Model Source

- **Paper:** *coming soon*.

## Uses

### Direct Use

Research on large language models; as a foundation for further specialization and finetuning for specific usecases (e.g., summarization, text generation, chatbot, etc.)

### Out-of-Scope Use

Production use without adequate assessment of risks and mitigation; any use cases which may be considered irresponsible or harmful. 

## Bias, Risks, and Limitations

Falcon-7B is trained on English and French data only, and will not generalize appropriately to other languages. Furthermore, as it is trained on a large-scale corpora representative of the web, it will carry the stereotypes and biases commonly encountered online.

### Recommendations

We recommend users of Falcon-7B to consider finetuning it for the specific set of tasks of interest, and for guardrails and appropriate precautions to be taken for any production use.

## How to Get Started with the Model


```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import transformers
import torch

model = "tiiuae/falcon-7b"

tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto",
)
sequences = pipeline(
   "Girafatron is obsessed with giraffes, the most glorious animal on the face of this Earth. Giraftron believes all other animals are irrelevant when compared to the glorious majesty of the giraffe.\nDaniel: Hello, Girafatron!\nGirafatron:",
    max_length=200,
    do_sample=True,
    top_k=10,
    num_return_sequences=1,
    eos_token_id=tokenizer.eos_token_id,
)
for seq in sequences:
    print(f"Result: {seq['generated_text']}")

```

## Training Details

### Training Data

Falcon-7B was trained on 1,500B tokens of [RefinedWeb](https://huggingface.co/datasets/tiiuae/falcon-refinedweb), a high-quality filtered and deduplicated web dataset which we enhanced with curated corpora. Significant components from our curated copora were inspired by The Pile ([Gao et al., 2020](https://arxiv.org/abs/2101.00027)). 

| **Data source**    | **Fraction** | **Tokens** | **Sources**                       |
|--------------------|--------------|------------|-----------------------------------|
| [RefinedWeb-English](https://huggingface.co/datasets/tiiuae/falcon-refinedweb) | 79%          | 1,185B     | massive web crawl                 |
| Books              | 7%           | 110B       |                                   |
| Conversations      | 6%           | 85B        | Reddit, StackOverflow, HackerNews |
| Code               | 3%           | 45B        |                                   |
| RefinedWeb-French  | 3%           | 45B        | massive web crawl                 |
| Technical          | 2%           | 30B        | arXiv, PubMed, USPTO, etc.        |


The data was tokenized with the Falcon-[7B](https://huggingface.co/tiiuae/falcon-7b)/[40B](https://huggingface.co/tiiuae/falcon-40b) tokenizer.

### Training Procedure 

Falcon-7B was trained on 384 A100 40GB GPUs, using a 2D parallelism strategy (PP=2, DP=192) combined with ZeRO.

#### Training Hyperparameters

| **Hyperparameter** | **Value**  | **Comment**                               |
|--------------------|------------|-------------------------------------------|
| Precision          | `bfloat16` |                                           |
| Optimizer          | AdamW      |                                           |
| Learning rate      | 6e-4       | 4B tokens warm-up, cosine decay to 1.2e-5 |
| Weight decay       | 1e-1       |                                           |
| Z-loss       | 1e-4       |                                           |
| Batch size         | 2304        | 30B tokens ramp-up                         |


#### Speeds, Sizes, Times

Training happened in early March 2023 and took about two weeks. 


## Evaluation

*Paper coming soon*.

See the [OpenLLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) for early results.


## Technical Specifications 

### Model Architecture and Objective

Falcon-7B is a causal decoder-only model trained on a causal language modeling task (i.e., predict the next token).

The architecture is broadly adapted from the GPT-3 paper ([Brown et al., 2020](https://arxiv.org/abs/2005.14165)), with the following differences:

* **Positionnal embeddings:** rotary ([Su et al., 2021](https://arxiv.org/abs/2104.09864));
* **Attention:** multiquery ([Shazeer et al., 2019](https://arxiv.org/abs/1911.02150)) and FlashAttention ([Dao et al., 2022](https://arxiv.org/abs/2205.14135));
* **Decoder-block:** parallel attention/MLP with a single layer norm.

| **Hyperparameter** | **Value** | **Comment**                            |
|--------------------|-----------|----------------------------------------|
| Layers             | 32        |                                        |
| `d_model`          | 4544      | Increased to compensate for multiquery                                       |
| `head_dim`         | 64        | Reduced to optimise for FlashAttention |
| Vocabulary         | 65024     |                                        |
| Sequence length    | 2048      |                                        |

### Compute Infrastructure

#### Hardware

Falcon-7B was trained on AWS SageMaker, on 384 A100 40GB GPUs in P4d instances. 

#### Software

Falcon-7B was trained a custom distributed training codebase, Gigatron. It uses a 3D parallelism approach combined with ZeRO and high-performance Triton kernels (FlashAttention, etc.)


## Citation

*Paper coming soon* 😊. In the meanwhile, you can use the following information to cite: 
```
@article{falcon40b,
  title={{Falcon-40B}: an open large language model with state-of-the-art performance},
  author={Almazrouei, Ebtesam and Alobeidli, Hamza and Alshamsi, Abdulaziz and Cappelli, Alessandro and Cojocaru, Ruxandra and Debbah, Merouane and Goffinet, Etienne and Heslow, Daniel and Launay, Julien and Malartic, Quentin and Noune, Badreddine and Pannier, Baptiste and Penedo, Guilherme},
  year={2023}
}
```

To learn more about the pretraining dataset, see the πŸ““ [RefinedWeb paper](https://arxiv.org/abs/2306.01116).

```
@article{refinedweb,
  title={The {R}efined{W}eb dataset for {F}alcon {LLM}: outperforming curated corpora with web data, and web data only},
  author={Guilherme Penedo and Quentin Malartic and Daniel Hesslow and Ruxandra Cojocaru and Alessandro Cappelli and Hamza Alobeidli and Baptiste Pannier and Ebtesam Almazrouei and Julien Launay},
  journal={arXiv preprint arXiv:2306.01116},
  eprint={2306.01116},
  eprinttype = {arXiv},
  url={https://arxiv.org/abs/2306.01116},
  year={2023}
}
```

## License

Falcon-7B is made available under the Apache 2.0 license.

## Contact
falconllm@tii.ae