arnocandel commited on
Commit
cc7005e
1 Parent(s): 42e26f6

Revert "add configuration/modeling py"

Browse files

This reverts commit 9c4930ddf6bc632b140e7bc3be49948906c39af7.

Files changed (3) hide show
  1. config.json +0 -6
  2. configuration_llama.py +0 -176
  3. modeling_llama.py +0 -1020
config.json CHANGED
@@ -2,12 +2,6 @@
2
  "architectures": [
3
  "LlamaForCausalLM"
4
  ],
5
- "auto_map": {
6
- "AutoConfig": "configuration_llama.LlamaConfig",
7
- "AutoModel": "modeling_llama.LlamaModel",
8
- "AutoModelForCausalLM": "modeling_llama.LlamaForCausalLM",
9
- "AutoModelForSequenceClassification": "modeling_llama.LlamaForSequenceClassification"
10
- },
11
  "pad_token_id": 0,
12
  "bos_token_id": 1,
13
  "eos_token_id": 2,
 
2
  "architectures": [
3
  "LlamaForCausalLM"
4
  ],
 
 
 
 
 
 
5
  "pad_token_id": 0,
6
  "bos_token_id": 1,
7
  "eos_token_id": 2,
configuration_llama.py DELETED
@@ -1,176 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
- #
4
- # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
- # and OPT implementations in this library. It has been modified from its
6
- # original forms to accommodate minor architectural differences compared
7
- # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
- #
9
- # Licensed under the Apache License, Version 2.0 (the "License");
10
- # you may not use this file except in compliance with the License.
11
- # You may obtain a copy of the License at
12
- #
13
- # http://www.apache.org/licenses/LICENSE-2.0
14
- #
15
- # Unless required by applicable law or agreed to in writing, software
16
- # distributed under the License is distributed on an "AS IS" BASIS,
17
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
- # See the License for the specific language governing permissions and
19
- # limitations under the License.
20
- """ LLaMA model configuration"""
21
-
22
- from transformers.configuration_utils import PretrainedConfig
23
- from transformers.utils import logging
24
-
25
-
26
- logger = logging.get_logger(__name__)
27
-
28
- LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
29
-
30
-
31
- class LlamaConfig(PretrainedConfig):
32
- r"""
33
- This is the configuration class to store the configuration of a [`LlamaModel`]. It is used to instantiate an LLaMA
34
- model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
35
- defaults will yield a similar configuration to that of the LLaMA-7B.
36
-
37
- Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
38
- documentation from [`PretrainedConfig`] for more information.
39
-
40
-
41
- Args:
42
- vocab_size (`int`, *optional*, defaults to 32000):
43
- Vocabulary size of the LLaMA model. Defines the number of different tokens that can be represented by the
44
- `inputs_ids` passed when calling [`LlamaModel`]
45
- hidden_size (`int`, *optional*, defaults to 4096):
46
- Dimension of the hidden representations.
47
- intermediate_size (`int`, *optional*, defaults to 11008):
48
- Dimension of the MLP representations.
49
- num_hidden_layers (`int`, *optional*, defaults to 32):
50
- Number of hidden layers in the Transformer encoder.
51
- num_attention_heads (`int`, *optional*, defaults to 32):
52
- Number of attention heads for each attention layer in the Transformer encoder.
53
- num_key_value_heads (`int`, *optional*):
54
- This is the number of key_value heads that should be used to implement Grouped Query Attention. If
55
- `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
56
- `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
57
- converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
58
- by meanpooling all the original heads within that group. For more details checkout [this
59
- paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
60
- `num_attention_heads`.
61
- pretraining_tp (`int`, *optional*, defaults to `1`):
62
- Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
63
- document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is
64
- necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
65
- issue](https://github.com/pytorch/pytorch/issues/76232).
66
- hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
67
- The non-linear activation function (function or string) in the decoder.
68
- max_position_embeddings (`int`, *optional*, defaults to 2048):
69
- The maximum sequence length that this model might ever be used with. Typically set this to something large
70
- just in case (e.g., 512 or 1024 or 2048).
71
- initializer_range (`float`, *optional*, defaults to 0.02):
72
- The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
73
- rms_norm_eps (`float`, *optional*, defaults to 1e-12):
74
- The epsilon used by the rms normalization layers.
75
- use_cache (`bool`, *optional*, defaults to `True`):
76
- Whether or not the model should return the last key/values attentions (not used by all models). Only
77
- relevant if `config.is_decoder=True`.
78
- tie_word_embeddings(`bool`, *optional*, defaults to `False`):
79
- Whether to tie weight embeddings
80
- rope_scaling (`Dict`, *optional*):
81
- Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
82
- strategies: linear and dynamic. Their scaling factor must be an float greater than 1. The expected format
83
- is `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
84
- `max_position_embeddings` to the expected new maximum. See the following thread for more information on how
85
- these scaling strategies behave:
86
- https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
87
- experimental feature, subject to breaking API changes in future versions.
88
-
89
- Example:
90
-
91
- ```python
92
- >>> from transformers import LlamaModel, LlamaConfig
93
-
94
- >>> # Initializing a LLaMA llama-7b style configuration
95
- >>> configuration = LlamaConfig()
96
-
97
- >>> # Initializing a model from the llama-7b style configuration
98
- >>> model = LlamaModel(configuration)
99
-
100
- >>> # Accessing the model configuration
101
- >>> configuration = model.config
102
- ```"""
103
- model_type = "llama"
104
- keys_to_ignore_at_inference = ["past_key_values"]
105
-
106
- def __init__(
107
- self,
108
- vocab_size=32000,
109
- hidden_size=4096,
110
- intermediate_size=11008,
111
- num_hidden_layers=32,
112
- num_attention_heads=32,
113
- num_key_value_heads=None,
114
- hidden_act="silu",
115
- max_position_embeddings=2048,
116
- initializer_range=0.02,
117
- rms_norm_eps=1e-6,
118
- use_cache=True,
119
- pad_token_id=None,
120
- bos_token_id=1,
121
- eos_token_id=2,
122
- pretraining_tp=1,
123
- tie_word_embeddings=False,
124
- rope_scaling=None,
125
- rope_theta=10000,
126
- **kwargs,
127
- ):
128
- self.vocab_size = vocab_size
129
- self.max_position_embeddings = max_position_embeddings
130
- self.hidden_size = hidden_size
131
- self.intermediate_size = intermediate_size
132
- self.num_hidden_layers = num_hidden_layers
133
- self.num_attention_heads = num_attention_heads
134
-
135
- # for backward compatibility
136
- if num_key_value_heads is None:
137
- num_key_value_heads = num_attention_heads
138
-
139
- self.num_key_value_heads = num_key_value_heads
140
- self.hidden_act = hidden_act
141
- self.initializer_range = initializer_range
142
- self.rms_norm_eps = rms_norm_eps
143
- self.pretraining_tp = pretraining_tp
144
- self.use_cache = use_cache
145
- self.rope_scaling = rope_scaling
146
- self._rope_scaling_validation()
147
- self.rope_theta = rope_theta
148
-
149
- super().__init__(
150
- pad_token_id=pad_token_id,
151
- bos_token_id=bos_token_id,
152
- eos_token_id=eos_token_id,
153
- tie_word_embeddings=tie_word_embeddings,
154
- **kwargs,
155
- )
156
-
157
- def _rope_scaling_validation(self):
158
- """
159
- Validate the `rope_scaling` configuration.
160
- """
161
- if self.rope_scaling is None:
162
- return
163
-
164
- if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
165
- raise ValueError(
166
- "`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, "
167
- f"got {self.rope_scaling}"
168
- )
169
- rope_scaling_type = self.rope_scaling.get("type", None)
170
- rope_scaling_factor = self.rope_scaling.get("factor", None)
171
- if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
172
- raise ValueError(
173
- f"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
174
- )
175
- if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
176
- raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
modeling_llama.py DELETED
@@ -1,1020 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
- #
4
- # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
- # and OPT implementations in this library. It has been modified from its
6
- # original forms to accommodate minor architectural differences compared
7
- # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
- #
9
- # Licensed under the Apache License, Version 2.0 (the "License");
10
- # you may not use this file except in compliance with the License.
11
- # You may obtain a copy of the License at
12
- #
13
- # http://www.apache.org/licenses/LICENSE-2.0
14
- #
15
- # Unless required by applicable law or agreed to in writing, software
16
- # distributed under the License is distributed on an "AS IS" BASIS,
17
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
- # See the License for the specific language governing permissions and
19
- # limitations under the License.
20
- """ PyTorch LLaMA model."""
21
- import math
22
- from typing import List, Optional, Tuple, Union
23
-
24
- import torch
25
- import torch.nn.functional as F
26
- import torch.utils.checkpoint
27
- from torch import nn
28
- from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
29
-
30
- from transformers.activations import ACT2FN
31
- from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast
32
- from transformers.modeling_utils import PreTrainedModel
33
- from transformers.utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
34
- from .configuration_llama import LlamaConfig
35
-
36
-
37
- logger = logging.get_logger(__name__)
38
-
39
- _CONFIG_FOR_DOC = "LlamaConfig"
40
-
41
-
42
- # Copied from transformers.models.bart.modeling_bart._make_causal_mask
43
- def _make_causal_mask(
44
- input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
45
- ):
46
- """
47
- Make causal mask used for bi-directional self-attention.
48
- """
49
- bsz, tgt_len = input_ids_shape
50
- mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device)
51
- mask_cond = torch.arange(mask.size(-1), device=device)
52
- mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
53
- mask = mask.to(dtype)
54
-
55
- if past_key_values_length > 0:
56
- mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
57
- return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
58
-
59
-
60
- # Copied from transformers.models.bart.modeling_bart._expand_mask
61
- def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
62
- """
63
- Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
64
- """
65
- bsz, src_len = mask.size()
66
- tgt_len = tgt_len if tgt_len is not None else src_len
67
-
68
- expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
69
-
70
- inverted_mask = 1.0 - expanded_mask
71
-
72
- return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
73
-
74
-
75
- class LlamaRMSNorm(nn.Module):
76
- def __init__(self, hidden_size, eps=1e-6):
77
- """
78
- LlamaRMSNorm is equivalent to T5LayerNorm
79
- """
80
- super().__init__()
81
- self.weight = nn.Parameter(torch.ones(hidden_size))
82
- self.variance_epsilon = eps
83
-
84
- def forward(self, hidden_states):
85
- input_dtype = hidden_states.dtype
86
- hidden_states = hidden_states.to(torch.float32)
87
- variance = hidden_states.pow(2).mean(-1, keepdim=True)
88
- hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
89
- return self.weight * hidden_states.to(input_dtype)
90
-
91
-
92
- class LlamaRotaryEmbedding(torch.nn.Module):
93
- def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
94
- super().__init__()
95
-
96
- self.dim = dim
97
- self.max_position_embeddings = max_position_embeddings
98
- self.base = base
99
- inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
100
- self.register_buffer("inv_freq", inv_freq, persistent=False)
101
-
102
- # Build here to make `torch.jit.trace` work.
103
- self._set_cos_sin_cache(
104
- seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
105
- )
106
-
107
- def _set_cos_sin_cache(self, seq_len, device, dtype):
108
- self.max_seq_len_cached = seq_len
109
- t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
110
-
111
- freqs = torch.einsum("i,j->ij", t, self.inv_freq)
112
- # Different from paper, but it uses a different permutation in order to obtain the same calculation
113
- emb = torch.cat((freqs, freqs), dim=-1)
114
- self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
115
- self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
116
-
117
- def forward(self, x, seq_len=None):
118
- # x: [bs, num_attention_heads, seq_len, head_size]
119
- if seq_len > self.max_seq_len_cached:
120
- self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
121
-
122
- return (
123
- self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
124
- self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
125
- )
126
-
127
-
128
- class LlamaLinearScalingRotaryEmbedding(LlamaRotaryEmbedding):
129
- """LlamaRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
130
-
131
- def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
132
- self.scaling_factor = scaling_factor
133
- super().__init__(dim, max_position_embeddings, base, device)
134
-
135
- def _set_cos_sin_cache(self, seq_len, device, dtype):
136
- self.max_seq_len_cached = seq_len
137
- t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
138
- t = t / self.scaling_factor
139
-
140
- freqs = torch.einsum("i,j->ij", t, self.inv_freq)
141
- # Different from paper, but it uses a different permutation in order to obtain the same calculation
142
- emb = torch.cat((freqs, freqs), dim=-1)
143
- self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
144
- self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
145
-
146
-
147
- class LlamaDynamicNTKScalingRotaryEmbedding(LlamaRotaryEmbedding):
148
- """LlamaRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
149
-
150
- def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
151
- self.scaling_factor = scaling_factor
152
- super().__init__(dim, max_position_embeddings, base, device)
153
-
154
- def _set_cos_sin_cache(self, seq_len, device, dtype):
155
- self.max_seq_len_cached = seq_len
156
-
157
- if seq_len > self.max_position_embeddings:
158
- base = self.base * (
159
- (self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
160
- ) ** (self.dim / (self.dim - 2))
161
- inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
162
- self.register_buffer("inv_freq", inv_freq, persistent=False)
163
-
164
- t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
165
-
166
- freqs = torch.einsum("i,j->ij", t, self.inv_freq)
167
- # Different from paper, but it uses a different permutation in order to obtain the same calculation
168
- emb = torch.cat((freqs, freqs), dim=-1)
169
- self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
170
- self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
171
-
172
-
173
- def rotate_half(x):
174
- """Rotates half the hidden dims of the input."""
175
- x1 = x[..., : x.shape[-1] // 2]
176
- x2 = x[..., x.shape[-1] // 2 :]
177
- return torch.cat((-x2, x1), dim=-1)
178
-
179
-
180
- def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
181
- # The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
182
- cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
183
- sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
184
- cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
185
- sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
186
- q_embed = (q * cos) + (rotate_half(q) * sin)
187
- k_embed = (k * cos) + (rotate_half(k) * sin)
188
- return q_embed, k_embed
189
-
190
-
191
- class LlamaMLP(nn.Module):
192
- def __init__(self, config):
193
- super().__init__()
194
- self.config = config
195
- self.hidden_size = config.hidden_size
196
- self.intermediate_size = config.intermediate_size
197
- self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
198
- self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
199
- self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
200
- self.act_fn = ACT2FN[config.hidden_act]
201
-
202
- def forward(self, x):
203
- if self.config.pretraining_tp > 1:
204
- slice = self.intermediate_size // self.config.pretraining_tp
205
- gate_proj_slices = self.gate_proj.weight.split(slice, dim=0)
206
- up_proj_slices = self.up_proj.weight.split(slice, dim=0)
207
- down_proj_slices = self.down_proj.weight.split(slice, dim=1)
208
-
209
- gate_proj = torch.cat(
210
- [F.linear(x, gate_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1
211
- )
212
- up_proj = torch.cat([F.linear(x, up_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1)
213
-
214
- intermediate_states = (self.act_fn(gate_proj) * up_proj).split(slice, dim=2)
215
- down_proj = [
216
- F.linear(intermediate_states[i], down_proj_slices[i]) for i in range(self.config.pretraining_tp)
217
- ]
218
- down_proj = sum(down_proj)
219
- else:
220
- down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
221
-
222
- return down_proj
223
-
224
-
225
- def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
226
- """
227
- This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
228
- num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
229
- """
230
- batch, num_key_value_heads, slen, head_dim = hidden_states.shape
231
- if n_rep == 1:
232
- return hidden_states
233
- hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
234
- return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
235
-
236
-
237
- class LlamaAttention(nn.Module):
238
- """Multi-headed attention from 'Attention Is All You Need' paper"""
239
-
240
- def __init__(self, config: LlamaConfig):
241
- super().__init__()
242
- self.config = config
243
- self.hidden_size = config.hidden_size
244
- self.num_heads = config.num_attention_heads
245
- self.head_dim = self.hidden_size // self.num_heads
246
- self.num_key_value_heads = config.num_key_value_heads
247
- self.num_key_value_groups = self.num_heads // self.num_key_value_heads
248
- self.max_position_embeddings = config.max_position_embeddings
249
- self.rope_theta = config.rope_theta
250
-
251
- if (self.head_dim * self.num_heads) != self.hidden_size:
252
- raise ValueError(
253
- f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
254
- f" and `num_heads`: {self.num_heads})."
255
- )
256
- self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
257
- self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
258
- self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
259
- self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
260
- self._init_rope()
261
-
262
- def _init_rope(self):
263
- if self.config.rope_scaling is None:
264
- self.rotary_emb = LlamaRotaryEmbedding(
265
- self.head_dim, max_position_embeddings=self.max_position_embeddings,
266
- base=self.rope_theta
267
- )
268
- else:
269
- scaling_type = self.config.rope_scaling["type"]
270
- scaling_factor = self.config.rope_scaling["factor"]
271
- if scaling_type == "linear":
272
- self.rotary_emb = LlamaLinearScalingRotaryEmbedding(
273
- self.head_dim, max_position_embeddings=self.max_position_embeddings,
274
- base=self.rope_theta, scaling_factor=scaling_factor
275
- )
276
- elif scaling_type == "dynamic":
277
- self.rotary_emb = LlamaDynamicNTKScalingRotaryEmbedding(
278
- self.head_dim, max_position_embeddings=self.max_position_embeddings,
279
- base=self.rope_theta, scaling_factor=scaling_factor
280
- )
281
- else:
282
- raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
283
-
284
- def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
285
- return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
286
-
287
- def forward(
288
- self,
289
- hidden_states: torch.Tensor,
290
- attention_mask: Optional[torch.Tensor] = None,
291
- position_ids: Optional[torch.LongTensor] = None,
292
- past_key_value: Optional[Tuple[torch.Tensor]] = None,
293
- output_attentions: bool = False,
294
- use_cache: bool = False,
295
- ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
296
- bsz, q_len, _ = hidden_states.size()
297
-
298
- if self.config.pretraining_tp > 1:
299
- key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.config.pretraining_tp
300
- query_slices = self.q_proj.weight.split(
301
- (self.num_heads * self.head_dim) // self.config.pretraining_tp, dim=0
302
- )
303
- key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
304
- value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
305
-
306
- query_states = [F.linear(hidden_states, query_slices[i]) for i in range(self.config.pretraining_tp)]
307
- query_states = torch.cat(query_states, dim=-1)
308
-
309
- key_states = [F.linear(hidden_states, key_slices[i]) for i in range(self.config.pretraining_tp)]
310
- key_states = torch.cat(key_states, dim=-1)
311
-
312
- value_states = [F.linear(hidden_states, value_slices[i]) for i in range(self.config.pretraining_tp)]
313
- value_states = torch.cat(value_states, dim=-1)
314
-
315
- else:
316
- query_states = self.q_proj(hidden_states)
317
- key_states = self.k_proj(hidden_states)
318
- value_states = self.v_proj(hidden_states)
319
-
320
- query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
321
- key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
322
- value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
323
-
324
- kv_seq_len = key_states.shape[-2]
325
- if past_key_value is not None:
326
- kv_seq_len += past_key_value[0].shape[-2]
327
- cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
328
- query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
329
-
330
- if past_key_value is not None:
331
- # reuse k, v, self_attention
332
- key_states = torch.cat([past_key_value[0], key_states], dim=2)
333
- value_states = torch.cat([past_key_value[1], value_states], dim=2)
334
-
335
- past_key_value = (key_states, value_states) if use_cache else None
336
-
337
- # repeat k/v heads if n_kv_heads < n_heads
338
- key_states = repeat_kv(key_states, self.num_key_value_groups)
339
- value_states = repeat_kv(value_states, self.num_key_value_groups)
340
-
341
- attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
342
-
343
- if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
344
- raise ValueError(
345
- f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
346
- f" {attn_weights.size()}"
347
- )
348
-
349
- if attention_mask is not None:
350
- if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
351
- raise ValueError(
352
- f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
353
- )
354
- attn_weights = attn_weights + attention_mask
355
-
356
- # upcast attention to fp32
357
- attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
358
- attn_output = torch.matmul(attn_weights, value_states)
359
-
360
- if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
361
- raise ValueError(
362
- f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
363
- f" {attn_output.size()}"
364
- )
365
-
366
- attn_output = attn_output.transpose(1, 2).contiguous()
367
- attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
368
-
369
- if self.config.pretraining_tp > 1:
370
- attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
371
- o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.config.pretraining_tp, dim=1)
372
- attn_output = sum([F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.config.pretraining_tp)])
373
- else:
374
- attn_output = self.o_proj(attn_output)
375
-
376
- if not output_attentions:
377
- attn_weights = None
378
-
379
- return attn_output, attn_weights, past_key_value
380
-
381
-
382
- class LlamaDecoderLayer(nn.Module):
383
- def __init__(self, config: LlamaConfig):
384
- super().__init__()
385
- self.hidden_size = config.hidden_size
386
- self.self_attn = LlamaAttention(config=config)
387
- self.mlp = LlamaMLP(config)
388
- self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
389
- self.post_attention_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
390
-
391
- def forward(
392
- self,
393
- hidden_states: torch.Tensor,
394
- attention_mask: Optional[torch.Tensor] = None,
395
- position_ids: Optional[torch.LongTensor] = None,
396
- past_key_value: Optional[Tuple[torch.Tensor]] = None,
397
- output_attentions: Optional[bool] = False,
398
- use_cache: Optional[bool] = False,
399
- ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
400
- """
401
- Args:
402
- hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
403
- attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
404
- `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
405
- output_attentions (`bool`, *optional*):
406
- Whether or not to return the attentions tensors of all attention layers. See `attentions` under
407
- returned tensors for more detail.
408
- use_cache (`bool`, *optional*):
409
- If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
410
- (see `past_key_values`).
411
- past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
412
- """
413
-
414
- residual = hidden_states
415
-
416
- hidden_states = self.input_layernorm(hidden_states)
417
-
418
- # Self Attention
419
- hidden_states, self_attn_weights, present_key_value = self.self_attn(
420
- hidden_states=hidden_states,
421
- attention_mask=attention_mask,
422
- position_ids=position_ids,
423
- past_key_value=past_key_value,
424
- output_attentions=output_attentions,
425
- use_cache=use_cache,
426
- )
427
- hidden_states = residual + hidden_states
428
-
429
- # Fully Connected
430
- residual = hidden_states
431
- hidden_states = self.post_attention_layernorm(hidden_states)
432
- hidden_states = self.mlp(hidden_states)
433
- hidden_states = residual + hidden_states
434
-
435
- outputs = (hidden_states,)
436
-
437
- if output_attentions:
438
- outputs += (self_attn_weights,)
439
-
440
- if use_cache:
441
- outputs += (present_key_value,)
442
-
443
- return outputs
444
-
445
-
446
- LLAMA_START_DOCSTRING = r"""
447
- This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
448
- library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
449
- etc.)
450
-
451
- This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
452
- Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
453
- and behavior.
454
-
455
- Parameters:
456
- config ([`LlamaConfig`]):
457
- Model configuration class with all the parameters of the model. Initializing with a config file does not
458
- load the weights associated with the model, only the configuration. Check out the
459
- [`~PreTrainedModel.from_pretrained`] method to load the model weights.
460
- """
461
-
462
-
463
- @add_start_docstrings(
464
- "The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
465
- LLAMA_START_DOCSTRING,
466
- )
467
- class LlamaPreTrainedModel(PreTrainedModel):
468
- config_class = LlamaConfig
469
- base_model_prefix = "model"
470
- supports_gradient_checkpointing = True
471
- _no_split_modules = ["LlamaDecoderLayer"]
472
- _skip_keys_device_placement = "past_key_values"
473
-
474
- def _init_weights(self, module):
475
- std = self.config.initializer_range
476
- if isinstance(module, nn.Linear):
477
- module.weight.data.normal_(mean=0.0, std=std)
478
- if module.bias is not None:
479
- module.bias.data.zero_()
480
- elif isinstance(module, nn.Embedding):
481
- module.weight.data.normal_(mean=0.0, std=std)
482
- if module.padding_idx is not None:
483
- module.weight.data[module.padding_idx].zero_()
484
-
485
- def _set_gradient_checkpointing(self, module, value=False):
486
- if isinstance(module, LlamaModel):
487
- module.gradient_checkpointing = value
488
-
489
-
490
- LLAMA_INPUTS_DOCSTRING = r"""
491
- Args:
492
- input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
493
- Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
494
- it.
495
-
496
- Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
497
- [`PreTrainedTokenizer.__call__`] for details.
498
-
499
- [What are input IDs?](../glossary#input-ids)
500
- attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
501
- Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
502
-
503
- - 1 for tokens that are **not masked**,
504
- - 0 for tokens that are **masked**.
505
-
506
- [What are attention masks?](../glossary#attention-mask)
507
-
508
- Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
509
- [`PreTrainedTokenizer.__call__`] for details.
510
-
511
- If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
512
- `past_key_values`).
513
-
514
- If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
515
- and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
516
- information on the default strategy.
517
-
518
- - 1 indicates the head is **not masked**,
519
- - 0 indicates the head is **masked**.
520
- position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
521
- Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
522
- config.n_positions - 1]`.
523
-
524
- [What are position IDs?](../glossary#position-ids)
525
- past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
526
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
527
- `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
528
- `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
529
-
530
- Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
531
- blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
532
-
533
- If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
534
- don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
535
- `decoder_input_ids` of shape `(batch_size, sequence_length)`.
536
- inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
537
- Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
538
- is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
539
- model's internal embedding lookup matrix.
540
- use_cache (`bool`, *optional*):
541
- If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
542
- `past_key_values`).
543
- output_attentions (`bool`, *optional*):
544
- Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
545
- tensors for more detail.
546
- output_hidden_states (`bool`, *optional*):
547
- Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
548
- more detail.
549
- return_dict (`bool`, *optional*):
550
- Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
551
- """
552
-
553
-
554
- @add_start_docstrings(
555
- "The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
556
- LLAMA_START_DOCSTRING,
557
- )
558
- class LlamaModel(LlamaPreTrainedModel):
559
- """
560
- Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LlamaDecoderLayer`]
561
-
562
- Args:
563
- config: LlamaConfig
564
- """
565
-
566
- def __init__(self, config: LlamaConfig):
567
- super().__init__(config)
568
- self.padding_idx = config.pad_token_id
569
- self.vocab_size = config.vocab_size
570
-
571
- self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
572
- self.layers = nn.ModuleList([LlamaDecoderLayer(config) for _ in range(config.num_hidden_layers)])
573
- self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
574
-
575
- self.gradient_checkpointing = False
576
- # Initialize weights and apply final processing
577
- self.post_init()
578
-
579
- def get_input_embeddings(self):
580
- return self.embed_tokens
581
-
582
- def set_input_embeddings(self, value):
583
- self.embed_tokens = value
584
-
585
- # Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
586
- def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
587
- # create causal mask
588
- # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
589
- combined_attention_mask = None
590
- if input_shape[-1] > 1:
591
- combined_attention_mask = _make_causal_mask(
592
- input_shape,
593
- inputs_embeds.dtype,
594
- device=inputs_embeds.device,
595
- past_key_values_length=past_key_values_length,
596
- )
597
-
598
- if attention_mask is not None:
599
- # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
600
- expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
601
- inputs_embeds.device
602
- )
603
- combined_attention_mask = (
604
- expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
605
- )
606
-
607
- return combined_attention_mask
608
-
609
- @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
610
- def forward(
611
- self,
612
- input_ids: torch.LongTensor = None,
613
- attention_mask: Optional[torch.Tensor] = None,
614
- position_ids: Optional[torch.LongTensor] = None,
615
- past_key_values: Optional[List[torch.FloatTensor]] = None,
616
- inputs_embeds: Optional[torch.FloatTensor] = None,
617
- use_cache: Optional[bool] = None,
618
- output_attentions: Optional[bool] = None,
619
- output_hidden_states: Optional[bool] = None,
620
- return_dict: Optional[bool] = None,
621
- ) -> Union[Tuple, BaseModelOutputWithPast]:
622
- output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
623
- output_hidden_states = (
624
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
625
- )
626
- use_cache = use_cache if use_cache is not None else self.config.use_cache
627
-
628
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
629
-
630
- # retrieve input_ids and inputs_embeds
631
- if input_ids is not None and inputs_embeds is not None:
632
- raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
633
- elif input_ids is not None:
634
- batch_size, seq_length = input_ids.shape
635
- elif inputs_embeds is not None:
636
- batch_size, seq_length, _ = inputs_embeds.shape
637
- else:
638
- raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
639
-
640
- seq_length_with_past = seq_length
641
- past_key_values_length = 0
642
-
643
- if past_key_values is not None:
644
- past_key_values_length = past_key_values[0][0].shape[2]
645
- seq_length_with_past = seq_length_with_past + past_key_values_length
646
-
647
- if position_ids is None:
648
- device = input_ids.device if input_ids is not None else inputs_embeds.device
649
- position_ids = torch.arange(
650
- past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
651
- )
652
- position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
653
- else:
654
- position_ids = position_ids.view(-1, seq_length).long()
655
-
656
- if inputs_embeds is None:
657
- inputs_embeds = self.embed_tokens(input_ids)
658
- # embed positions
659
- if attention_mask is None:
660
- attention_mask = torch.ones(
661
- (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
662
- )
663
- attention_mask = self._prepare_decoder_attention_mask(
664
- attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
665
- )
666
-
667
- hidden_states = inputs_embeds
668
-
669
- if self.gradient_checkpointing and self.training:
670
- if use_cache:
671
- logger.warning_once(
672
- "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
673
- )
674
- use_cache = False
675
-
676
- # decoder layers
677
- all_hidden_states = () if output_hidden_states else None
678
- all_self_attns = () if output_attentions else None
679
- next_decoder_cache = () if use_cache else None
680
-
681
- for idx, decoder_layer in enumerate(self.layers):
682
- if output_hidden_states:
683
- all_hidden_states += (hidden_states,)
684
-
685
- past_key_value = past_key_values[idx] if past_key_values is not None else None
686
-
687
- if self.gradient_checkpointing and self.training:
688
-
689
- def create_custom_forward(module):
690
- def custom_forward(*inputs):
691
- # None for past_key_value
692
- return module(*inputs, past_key_value, output_attentions)
693
-
694
- return custom_forward
695
-
696
- layer_outputs = torch.utils.checkpoint.checkpoint(
697
- create_custom_forward(decoder_layer),
698
- hidden_states,
699
- attention_mask,
700
- position_ids,
701
- )
702
- else:
703
- layer_outputs = decoder_layer(
704
- hidden_states,
705
- attention_mask=attention_mask,
706
- position_ids=position_ids,
707
- past_key_value=past_key_value,
708
- output_attentions=output_attentions,
709
- use_cache=use_cache,
710
- )
711
-
712
- hidden_states = layer_outputs[0]
713
-
714
- if use_cache:
715
- next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
716
-
717
- if output_attentions:
718
- all_self_attns += (layer_outputs[1],)
719
-
720
- hidden_states = self.norm(hidden_states)
721
-
722
- # add hidden states from the last decoder layer
723
- if output_hidden_states:
724
- all_hidden_states += (hidden_states,)
725
-
726
- next_cache = next_decoder_cache if use_cache else None
727
- if not return_dict:
728
- return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
729
- return BaseModelOutputWithPast(
730
- last_hidden_state=hidden_states,
731
- past_key_values=next_cache,
732
- hidden_states=all_hidden_states,
733
- attentions=all_self_attns,
734
- )
735
-
736
-
737
- class LlamaForCausalLM(LlamaPreTrainedModel):
738
- _tied_weights_keys = ["lm_head.weight"]
739
-
740
- def __init__(self, config):
741
- super().__init__(config)
742
- self.model = LlamaModel(config)
743
- self.vocab_size = config.vocab_size
744
- self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
745
-
746
- # Initialize weights and apply final processing
747
- self.post_init()
748
-
749
- def get_input_embeddings(self):
750
- return self.model.embed_tokens
751
-
752
- def set_input_embeddings(self, value):
753
- self.model.embed_tokens = value
754
-
755
- def get_output_embeddings(self):
756
- return self.lm_head
757
-
758
- def set_output_embeddings(self, new_embeddings):
759
- self.lm_head = new_embeddings
760
-
761
- def set_decoder(self, decoder):
762
- self.model = decoder
763
-
764
- def get_decoder(self):
765
- return self.model
766
-
767
- @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
768
- @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
769
- def forward(
770
- self,
771
- input_ids: torch.LongTensor = None,
772
- attention_mask: Optional[torch.Tensor] = None,
773
- position_ids: Optional[torch.LongTensor] = None,
774
- past_key_values: Optional[List[torch.FloatTensor]] = None,
775
- inputs_embeds: Optional[torch.FloatTensor] = None,
776
- labels: Optional[torch.LongTensor] = None,
777
- use_cache: Optional[bool] = None,
778
- output_attentions: Optional[bool] = None,
779
- output_hidden_states: Optional[bool] = None,
780
- return_dict: Optional[bool] = None,
781
- ) -> Union[Tuple, CausalLMOutputWithPast]:
782
- r"""
783
- Args:
784
- labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
785
- Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
786
- config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
787
- (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
788
-
789
- Returns:
790
-
791
- Example:
792
-
793
- ```python
794
- >>> from transformers import AutoTokenizer, LlamaForCausalLM
795
-
796
- >>> model = LlamaForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
797
- >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
798
-
799
- >>> prompt = "Hey, are you conscious? Can you talk to me?"
800
- >>> inputs = tokenizer(prompt, return_tensors="pt")
801
-
802
- >>> # Generate
803
- >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
804
- >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
805
- "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
806
- ```"""
807
-
808
- output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
809
- output_hidden_states = (
810
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
811
- )
812
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
813
-
814
- # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
815
- outputs = self.model(
816
- input_ids=input_ids,
817
- attention_mask=attention_mask,
818
- position_ids=position_ids,
819
- past_key_values=past_key_values,
820
- inputs_embeds=inputs_embeds,
821
- use_cache=use_cache,
822
- output_attentions=output_attentions,
823
- output_hidden_states=output_hidden_states,
824
- return_dict=return_dict,
825
- )
826
-
827
- hidden_states = outputs[0]
828
- if self.config.pretraining_tp > 1:
829
- lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0)
830
- logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.config.pretraining_tp)]
831
- logits = torch.cat(logits, dim=-1)
832
- else:
833
- logits = self.lm_head(hidden_states)
834
- logits = logits.float()
835
-
836
- loss = None
837
- if labels is not None:
838
- # Shift so that tokens < n predict n
839
- shift_logits = logits[..., :-1, :].contiguous()
840
- shift_labels = labels[..., 1:].contiguous()
841
- # Flatten the tokens
842
- loss_fct = CrossEntropyLoss()
843
- shift_logits = shift_logits.view(-1, self.config.vocab_size)
844
- shift_labels = shift_labels.view(-1)
845
- # Enable model parallelism
846
- shift_labels = shift_labels.to(shift_logits.device)
847
- loss = loss_fct(shift_logits, shift_labels)
848
-
849
- if not return_dict:
850
- output = (logits,) + outputs[1:]
851
- return (loss,) + output if loss is not None else output
852
-
853
- return CausalLMOutputWithPast(
854
- loss=loss,
855
- logits=logits,
856
- past_key_values=outputs.past_key_values,
857
- hidden_states=outputs.hidden_states,
858
- attentions=outputs.attentions,
859
- )
860
-
861
- def prepare_inputs_for_generation(
862
- self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
863
- ):
864
- if past_key_values:
865
- input_ids = input_ids[:, -1:]
866
-
867
- position_ids = kwargs.get("position_ids", None)
868
- if attention_mask is not None and position_ids is None:
869
- # create position_ids on the fly for batch generation
870
- position_ids = attention_mask.long().cumsum(-1) - 1
871
- position_ids.masked_fill_(attention_mask == 0, 1)
872
- if past_key_values:
873
- position_ids = position_ids[:, -1].unsqueeze(-1)
874
-
875
- # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
876
- if inputs_embeds is not None and past_key_values is None:
877
- model_inputs = {"inputs_embeds": inputs_embeds}
878
- else:
879
- model_inputs = {"input_ids": input_ids}
880
-
881
- model_inputs.update(
882
- {
883
- "position_ids": position_ids,
884
- "past_key_values": past_key_values,
885
- "use_cache": kwargs.get("use_cache"),
886
- "attention_mask": attention_mask,
887
- }
888
- )
889
- return model_inputs
890
-
891
- @staticmethod
892
- def _reorder_cache(past_key_values, beam_idx):
893
- reordered_past = ()
894
- for layer_past in past_key_values:
895
- reordered_past += (
896
- tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
897
- )
898
- return reordered_past
899
-
900
-
901
- @add_start_docstrings(
902
- """
903
- The LLaMa Model transformer with a sequence classification head on top (linear layer).
904
-
905
- [`LlamaForSequenceClassification`] uses the last token in order to do the classification, as other causal models
906
- (e.g. GPT-2) do.
907
-
908
- Since it does classification on the last token, it requires to know the position of the last token. If a
909
- `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
910
- no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
911
- padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
912
- each row of the batch).
913
- """,
914
- LLAMA_START_DOCSTRING,
915
- )
916
- class LlamaForSequenceClassification(LlamaPreTrainedModel):
917
- def __init__(self, config):
918
- super().__init__(config)
919
- self.num_labels = config.num_labels
920
- self.model = LlamaModel(config)
921
- self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
922
-
923
- # Initialize weights and apply final processing
924
- self.post_init()
925
-
926
- def get_input_embeddings(self):
927
- return self.model.embed_tokens
928
-
929
- def set_input_embeddings(self, value):
930
- self.model.embed_tokens = value
931
-
932
- @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
933
- def forward(
934
- self,
935
- input_ids: torch.LongTensor = None,
936
- attention_mask: Optional[torch.Tensor] = None,
937
- position_ids: Optional[torch.LongTensor] = None,
938
- past_key_values: Optional[List[torch.FloatTensor]] = None,
939
- inputs_embeds: Optional[torch.FloatTensor] = None,
940
- labels: Optional[torch.LongTensor] = None,
941
- use_cache: Optional[bool] = None,
942
- output_attentions: Optional[bool] = None,
943
- output_hidden_states: Optional[bool] = None,
944
- return_dict: Optional[bool] = None,
945
- ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
946
- r"""
947
- labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
948
- Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
949
- config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
950
- `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
951
- """
952
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
953
-
954
- transformer_outputs = self.model(
955
- input_ids,
956
- attention_mask=attention_mask,
957
- position_ids=position_ids,
958
- past_key_values=past_key_values,
959
- inputs_embeds=inputs_embeds,
960
- use_cache=use_cache,
961
- output_attentions=output_attentions,
962
- output_hidden_states=output_hidden_states,
963
- return_dict=return_dict,
964
- )
965
- hidden_states = transformer_outputs[0]
966
- logits = self.score(hidden_states)
967
-
968
- if input_ids is not None:
969
- batch_size = input_ids.shape[0]
970
- else:
971
- batch_size = inputs_embeds.shape[0]
972
-
973
- if self.config.pad_token_id is None and batch_size != 1:
974
- raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
975
- if self.config.pad_token_id is None:
976
- sequence_lengths = -1
977
- else:
978
- if input_ids is not None:
979
- sequence_lengths = (torch.eq(input_ids, self.config.pad_token_id).long().argmax(-1) - 1).to(
980
- logits.device
981
- )
982
- else:
983
- sequence_lengths = -1
984
-
985
- pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
986
-
987
- loss = None
988
- if labels is not None:
989
- labels = labels.to(logits.device)
990
- if self.config.problem_type is None:
991
- if self.num_labels == 1:
992
- self.config.problem_type = "regression"
993
- elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
994
- self.config.problem_type = "single_label_classification"
995
- else:
996
- self.config.problem_type = "multi_label_classification"
997
-
998
- if self.config.problem_type == "regression":
999
- loss_fct = MSELoss()
1000
- if self.num_labels == 1:
1001
- loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1002
- else:
1003
- loss = loss_fct(pooled_logits, labels)
1004
- elif self.config.problem_type == "single_label_classification":
1005
- loss_fct = CrossEntropyLoss()
1006
- loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
1007
- elif self.config.problem_type == "multi_label_classification":
1008
- loss_fct = BCEWithLogitsLoss()
1009
- loss = loss_fct(pooled_logits, labels)
1010
- if not return_dict:
1011
- output = (pooled_logits,) + transformer_outputs[1:]
1012
- return ((loss,) + output) if loss is not None else output
1013
-
1014
- return SequenceClassifierOutputWithPast(
1015
- loss=loss,
1016
- logits=pooled_logits,
1017
- past_key_values=transformer_outputs.past_key_values,
1018
- hidden_states=transformer_outputs.hidden_states,
1019
- attentions=transformer_outputs.attentions,
1020
- )