Update README.md
Browse files
README.md
CHANGED
@@ -24,7 +24,7 @@ This model was trained using [H2O LLM Studio](https://github.com/h2oai/h2o-llmst
|
|
24 |
|
25 |
## Usage
|
26 |
|
27 |
-
To use the model with the `transformers` library on a machine with GPUs, first make sure you have the `transformers`, `accelerate` and `
|
28 |
|
29 |
```bash
|
30 |
pip install transformers==4.29.2
|
@@ -68,7 +68,7 @@ print(generate_text.preprocess("Why is drinking water so healthy?")["prompt_text
|
|
68 |
<|prompt|>Why is drinking water so healthy?<|endoftext|><|answer|>
|
69 |
```
|
70 |
|
71 |
-
Alternatively,
|
72 |
|
73 |
|
74 |
```python
|
@@ -79,12 +79,14 @@ from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
79 |
tokenizer = AutoTokenizer.from_pretrained(
|
80 |
"h2oai/h2ogpt-gm-oasst1-en-2048-falcon-7b-v2",
|
81 |
use_fast=False,
|
82 |
-
padding_side="left"
|
|
|
83 |
)
|
84 |
model = AutoModelForCausalLM.from_pretrained(
|
85 |
"h2oai/h2ogpt-gm-oasst1-en-2048-falcon-7b-v2",
|
86 |
torch_dtype=torch.float16,
|
87 |
-
device_map={"": "cuda:0"}
|
|
|
88 |
)
|
89 |
generate_text = H2OTextGenerationPipeline(model=model, tokenizer=tokenizer)
|
90 |
|
@@ -112,8 +114,17 @@ model_name = "h2oai/h2ogpt-gm-oasst1-en-2048-falcon-7b-v2" # either local folde
|
|
112 |
# You can find an example prompt in the experiment logs.
|
113 |
prompt = "<|prompt|>How are you?<|endoftext|><|answer|>"
|
114 |
|
115 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
116 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
model.cuda().eval()
|
118 |
inputs = tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to("cuda")
|
119 |
|
|
|
24 |
|
25 |
## Usage
|
26 |
|
27 |
+
To use the model with the `transformers` library on a machine with GPUs, first make sure you have the `transformers`, `accelerate`, `torch` and `einops` libraries installed.
|
28 |
|
29 |
```bash
|
30 |
pip install transformers==4.29.2
|
|
|
68 |
<|prompt|>Why is drinking water so healthy?<|endoftext|><|answer|>
|
69 |
```
|
70 |
|
71 |
+
Alternatively, you can download [h2oai_pipeline.py](h2oai_pipeline.py), store it alongside your notebook, and construct the pipeline yourself from the loaded model and tokenizer:
|
72 |
|
73 |
|
74 |
```python
|
|
|
79 |
tokenizer = AutoTokenizer.from_pretrained(
|
80 |
"h2oai/h2ogpt-gm-oasst1-en-2048-falcon-7b-v2",
|
81 |
use_fast=False,
|
82 |
+
padding_side="left",
|
83 |
+
trust_remote_code=True,
|
84 |
)
|
85 |
model = AutoModelForCausalLM.from_pretrained(
|
86 |
"h2oai/h2ogpt-gm-oasst1-en-2048-falcon-7b-v2",
|
87 |
torch_dtype=torch.float16,
|
88 |
+
device_map={"": "cuda:0"},
|
89 |
+
trust_remote_code=True,
|
90 |
)
|
91 |
generate_text = H2OTextGenerationPipeline(model=model, tokenizer=tokenizer)
|
92 |
|
|
|
114 |
# You can find an example prompt in the experiment logs.
|
115 |
prompt = "<|prompt|>How are you?<|endoftext|><|answer|>"
|
116 |
|
117 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
118 |
+
model_name,
|
119 |
+
use_fast=False,
|
120 |
+
trust_remote_code=True,
|
121 |
+
)
|
122 |
+
model = AutoModelForCausalLM.from_pretrained(
|
123 |
+
model_name,
|
124 |
+
torch_dtype=torch.float16,
|
125 |
+
device_map={"": "cuda:0"},
|
126 |
+
trust_remote_code=True,
|
127 |
+
)
|
128 |
model.cuda().eval()
|
129 |
inputs = tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to("cuda")
|
130 |
|