Update README.md
Browse files
README.md
CHANGED
@@ -8,31 +8,46 @@ tags:
|
|
8 |
- large language model
|
9 |
- h2o-llmstudio
|
10 |
inference: false
|
11 |
-
thumbnail:
|
|
|
|
|
|
|
|
|
12 |
---
|
13 |
# Model Card
|
14 |
## Summary
|
15 |
|
16 |
This model was trained using [H2O LLM Studio](https://github.com/h2oai/h2o-llmstudio).
|
17 |
- Base model: [tiiuae/falcon-7b](https://huggingface.co/tiiuae/falcon-7b)
|
|
|
18 |
|
19 |
|
20 |
## Usage
|
21 |
|
22 |
-
To use the model with the `transformers` library on a machine with GPUs, first make sure you have the `transformers`, `accelerate` and `
|
23 |
|
24 |
```bash
|
25 |
-
pip install transformers==4.
|
26 |
-
pip install accelerate==0.
|
27 |
pip install torch==2.0.0
|
|
|
28 |
```
|
29 |
|
30 |
```python
|
31 |
import torch
|
32 |
-
from transformers import pipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
generate_text = pipeline(
|
35 |
model="h2oai/h2ogpt-gm-oasst1-en-2048-falcon-7b-v3",
|
|
|
36 |
torch_dtype=torch.float16,
|
37 |
trust_remote_code=True,
|
38 |
use_fast=False,
|
@@ -62,7 +77,7 @@ print(generate_text.preprocess("Why is drinking water so healthy?")["prompt_text
|
|
62 |
<|prompt|>Why is drinking water so healthy?<|endoftext|><|answer|>
|
63 |
```
|
64 |
|
65 |
-
Alternatively,
|
66 |
|
67 |
|
68 |
```python
|
@@ -73,12 +88,14 @@ from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
73 |
tokenizer = AutoTokenizer.from_pretrained(
|
74 |
"h2oai/h2ogpt-gm-oasst1-en-2048-falcon-7b-v3",
|
75 |
use_fast=False,
|
76 |
-
padding_side="left"
|
|
|
77 |
)
|
78 |
model = AutoModelForCausalLM.from_pretrained(
|
79 |
"h2oai/h2ogpt-gm-oasst1-en-2048-falcon-7b-v3",
|
80 |
torch_dtype=torch.float16,
|
81 |
-
device_map={"": "cuda:0"}
|
|
|
82 |
)
|
83 |
generate_text = H2OTextGenerationPipeline(model=model, tokenizer=tokenizer)
|
84 |
|
@@ -106,8 +123,17 @@ model_name = "h2oai/h2ogpt-gm-oasst1-en-2048-falcon-7b-v3" # either local folde
|
|
106 |
# You can find an example prompt in the experiment logs.
|
107 |
prompt = "<|prompt|>How are you?<|endoftext|><|answer|>"
|
108 |
|
109 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
110 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
model.cuda().eval()
|
112 |
inputs = tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to("cuda")
|
113 |
|
@@ -161,15 +187,6 @@ RWForCausalLM(
|
|
161 |
This model was trained using H2O LLM Studio and with the configuration in [cfg.yaml](cfg.yaml). Visit [H2O LLM Studio](https://github.com/h2oai/h2o-llmstudio) to learn how to train your own large language models.
|
162 |
|
163 |
|
164 |
-
## Model Validation
|
165 |
-
|
166 |
-
Model validation results using [EleutherAI lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness).
|
167 |
-
|
168 |
-
```bash
|
169 |
-
CUDA_VISIBLE_DEVICES=0 python main.py --model hf-causal-experimental --model_args pretrained=h2oai/h2ogpt-gm-oasst1-en-2048-falcon-7b-v3 --tasks openbookqa,arc_easy,winogrande,hellaswag,arc_challenge,piqa,boolq --device cuda &> eval.log
|
170 |
-
```
|
171 |
-
|
172 |
-
|
173 |
## Disclaimer
|
174 |
|
175 |
Please read this disclaimer carefully before using the large language model provided in this repository. Your use of the model signifies your agreement to the following terms and conditions.
|
|
|
8 |
- large language model
|
9 |
- h2o-llmstudio
|
10 |
inference: false
|
11 |
+
thumbnail: >-
|
12 |
+
https://h2o.ai/etc.clientlibs/h2o/clientlibs/clientlib-site/resources/images/favicon.ico
|
13 |
+
license: apache-2.0
|
14 |
+
datasets:
|
15 |
+
- OpenAssistant/oasst1
|
16 |
---
|
17 |
# Model Card
|
18 |
## Summary
|
19 |
|
20 |
This model was trained using [H2O LLM Studio](https://github.com/h2oai/h2o-llmstudio).
|
21 |
- Base model: [tiiuae/falcon-7b](https://huggingface.co/tiiuae/falcon-7b)
|
22 |
+
- Dataset preparation: [OpenAssistant/oasst1](https://github.com/h2oai/h2o-llmstudio/blob/1935d84d9caafed3ee686ad2733eb02d2abfce57/app_utils/utils.py#LL1896C5-L1896C28) personalized
|
23 |
|
24 |
|
25 |
## Usage
|
26 |
|
27 |
+
To use the model with the `transformers` library on a machine with GPUs, first make sure you have the `transformers`, `accelerate`, `torch` and `einops` libraries installed.
|
28 |
|
29 |
```bash
|
30 |
+
pip install transformers==4.29.2
|
31 |
+
pip install accelerate==0.19.0
|
32 |
pip install torch==2.0.0
|
33 |
+
pip install einops==0.6.1
|
34 |
```
|
35 |
|
36 |
```python
|
37 |
import torch
|
38 |
+
from transformers import AutoTokenizer, pipeline
|
39 |
+
|
40 |
+
|
41 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
42 |
+
"h2oai/h2ogpt-gm-oasst1-en-2048-falcon-7b-v3",
|
43 |
+
use_fast=False,
|
44 |
+
padding_side="left",
|
45 |
+
trust_remote_code=True,
|
46 |
+
)
|
47 |
|
48 |
generate_text = pipeline(
|
49 |
model="h2oai/h2ogpt-gm-oasst1-en-2048-falcon-7b-v3",
|
50 |
+
tokenizer=tokenizer,
|
51 |
torch_dtype=torch.float16,
|
52 |
trust_remote_code=True,
|
53 |
use_fast=False,
|
|
|
77 |
<|prompt|>Why is drinking water so healthy?<|endoftext|><|answer|>
|
78 |
```
|
79 |
|
80 |
+
Alternatively, you can download [h2oai_pipeline.py](h2oai_pipeline.py), store it alongside your notebook, and construct the pipeline yourself from the loaded model and tokenizer:
|
81 |
|
82 |
|
83 |
```python
|
|
|
88 |
tokenizer = AutoTokenizer.from_pretrained(
|
89 |
"h2oai/h2ogpt-gm-oasst1-en-2048-falcon-7b-v3",
|
90 |
use_fast=False,
|
91 |
+
padding_side="left",
|
92 |
+
trust_remote_code=True,
|
93 |
)
|
94 |
model = AutoModelForCausalLM.from_pretrained(
|
95 |
"h2oai/h2ogpt-gm-oasst1-en-2048-falcon-7b-v3",
|
96 |
torch_dtype=torch.float16,
|
97 |
+
device_map={"": "cuda:0"},
|
98 |
+
trust_remote_code=True,
|
99 |
)
|
100 |
generate_text = H2OTextGenerationPipeline(model=model, tokenizer=tokenizer)
|
101 |
|
|
|
123 |
# You can find an example prompt in the experiment logs.
|
124 |
prompt = "<|prompt|>How are you?<|endoftext|><|answer|>"
|
125 |
|
126 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
127 |
+
model_name,
|
128 |
+
use_fast=False,
|
129 |
+
trust_remote_code=True,
|
130 |
+
)
|
131 |
+
model = AutoModelForCausalLM.from_pretrained(
|
132 |
+
model_name,
|
133 |
+
torch_dtype=torch.float16,
|
134 |
+
device_map={"": "cuda:0"},
|
135 |
+
trust_remote_code=True,
|
136 |
+
)
|
137 |
model.cuda().eval()
|
138 |
inputs = tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to("cuda")
|
139 |
|
|
|
187 |
This model was trained using H2O LLM Studio and with the configuration in [cfg.yaml](cfg.yaml). Visit [H2O LLM Studio](https://github.com/h2oai/h2o-llmstudio) to learn how to train your own large language models.
|
188 |
|
189 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
190 |
## Disclaimer
|
191 |
|
192 |
Please read this disclaimer carefully before using the large language model provided in this repository. Your use of the model signifies your agreement to the following terms and conditions.
|