Update README.md
Browse files
README.md
CHANGED
@@ -33,13 +33,10 @@ pip install torch==2.0.0
|
|
33 |
pip install einops==0.6.1
|
34 |
```
|
35 |
|
36 |
-
Download [h2oai_pipeline.py](h2oai_pipeline.py), store it alongside your notebook, and construct the pipeline yourself from the loaded model and tokenizer:
|
37 |
-
|
38 |
-
|
39 |
```python
|
40 |
import torch
|
41 |
-
from
|
42 |
-
|
43 |
|
44 |
tokenizer = AutoTokenizer.from_pretrained(
|
45 |
"h2oai/h2ogpt-gm-oasst1-multilang-2048-falcon-7b",
|
@@ -47,13 +44,15 @@ tokenizer = AutoTokenizer.from_pretrained(
|
|
47 |
padding_side="left",
|
48 |
trust_remote_code=True,
|
49 |
)
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
|
|
54 |
trust_remote_code=True,
|
|
|
|
|
55 |
)
|
56 |
-
generate_text = H2OTextGenerationPipeline(model=model, tokenizer=tokenizer)
|
57 |
|
58 |
res = generate_text(
|
59 |
"Why is drinking water so healthy?",
|
@@ -78,6 +77,41 @@ print(generate_text.preprocess("Why is drinking water so healthy?")["prompt_text
|
|
78 |
<|prompt|>Why is drinking water so healthy?<|endoftext|><|answer|>
|
79 |
```
|
80 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
You may also construct the pipeline from the loaded model and tokenizer yourself and consider the preprocessing steps:
|
82 |
|
83 |
```python
|
|
|
33 |
pip install einops==0.6.1
|
34 |
```
|
35 |
|
|
|
|
|
|
|
36 |
```python
|
37 |
import torch
|
38 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
39 |
+
|
40 |
|
41 |
tokenizer = AutoTokenizer.from_pretrained(
|
42 |
"h2oai/h2ogpt-gm-oasst1-multilang-2048-falcon-7b",
|
|
|
44 |
padding_side="left",
|
45 |
trust_remote_code=True,
|
46 |
)
|
47 |
+
|
48 |
+
generate_text = pipeline(
|
49 |
+
model="h2oai/h2ogpt-gm-oasst1-multilang-2048-falcon-7b",
|
50 |
+
tokenizer=tokenizer,
|
51 |
+
torch_dtype=torch.float16,
|
52 |
trust_remote_code=True,
|
53 |
+
use_fast=False,
|
54 |
+
device_map={"": "cuda:0"},
|
55 |
)
|
|
|
56 |
|
57 |
res = generate_text(
|
58 |
"Why is drinking water so healthy?",
|
|
|
77 |
<|prompt|>Why is drinking water so healthy?<|endoftext|><|answer|>
|
78 |
```
|
79 |
|
80 |
+
Alternatively, you can download [h2oai_pipeline.py](h2oai_pipeline.py), store it alongside your notebook, and construct the pipeline yourself from the loaded model and tokenizer:
|
81 |
+
|
82 |
+
|
83 |
+
```python
|
84 |
+
import torch
|
85 |
+
from h2oai_pipeline import H2OTextGenerationPipeline
|
86 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
87 |
+
|
88 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
89 |
+
"h2oai/h2ogpt-gm-oasst1-multilang-2048-falcon-7b",
|
90 |
+
use_fast=False,
|
91 |
+
padding_side="left",
|
92 |
+
trust_remote_code=True,
|
93 |
+
)
|
94 |
+
model = AutoModelForCausalLM.from_pretrained(
|
95 |
+
"h2oai/h2ogpt-gm-oasst1-multilang-2048-falcon-7b",
|
96 |
+
torch_dtype=torch.bfloat16,
|
97 |
+
device_map={"": "cuda:0"},
|
98 |
+
trust_remote_code=True,
|
99 |
+
)
|
100 |
+
generate_text = H2OTextGenerationPipeline(model=model, tokenizer=tokenizer)
|
101 |
+
|
102 |
+
res = generate_text(
|
103 |
+
"Why is drinking water so healthy?",
|
104 |
+
min_new_tokens=2,
|
105 |
+
max_new_tokens=1024,
|
106 |
+
do_sample=False,
|
107 |
+
num_beams=1,
|
108 |
+
temperature=float(0.3),
|
109 |
+
repetition_penalty=float(1.2),
|
110 |
+
renormalize_logits=True
|
111 |
+
)
|
112 |
+
print(res[0]["generated_text"])
|
113 |
+
```
|
114 |
+
|
115 |
You may also construct the pipeline from the loaded model and tokenizer yourself and consider the preprocessing steps:
|
116 |
|
117 |
```python
|