arnocandel
commited on
Commit
•
a6ccb26
1
Parent(s):
4593e56
commit files to HF hub
Browse files
README.md
CHANGED
@@ -28,7 +28,8 @@ import torch
|
|
28 |
from transformers import pipeline
|
29 |
|
30 |
generate_text = pipeline(model="h2oai/h2ogpt-oasst1-512-12b", torch_dtype=torch.bfloat16, trust_remote_code=True, device_map="auto")
|
31 |
-
|
|
|
32 |
print(res[0]["generated_text"])
|
33 |
```
|
34 |
|
@@ -39,63 +40,13 @@ store it alongside your notebook, and construct the pipeline yourself from the l
|
|
39 |
import torch
|
40 |
from h2oai_pipeline import H2OTextGenerationPipeline
|
41 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
42 |
-
tokenizer = AutoTokenizer.from_pretrained("h2oai/h2ogpt-oasst1-512-12b", padding_side="left")
|
43 |
-
model = AutoModelForCausalLM.from_pretrained("h2oai/h2ogpt-oasst1-512-12b", device_map="auto", torch_dtype=torch.bfloat16)
|
44 |
|
|
|
|
|
45 |
generate_text = H2OTextGenerationPipeline(model=model, tokenizer=tokenizer)
|
46 |
-
```
|
47 |
-
|
48 |
-
### LangChain Usage
|
49 |
-
|
50 |
-
To use the pipeline with LangChain, you must set `return_full_text=True`, as LangChain expects the full text to be returned
|
51 |
-
and the default for the pipeline is to only return the new text.
|
52 |
-
|
53 |
-
```
|
54 |
-
import torch
|
55 |
-
from transformers import pipeline
|
56 |
-
|
57 |
-
generate_text = pipeline(model="h2oai/h2ogpt-oasst1-512-12b", torch_dtype=torch.bfloat16,
|
58 |
-
trust_remote_code=True, device_map="auto", return_full_text=True)
|
59 |
-
```
|
60 |
-
|
61 |
-
You can create a prompt that either has only an instruction or has an instruction with context:
|
62 |
-
|
63 |
-
```
|
64 |
-
from langchain import PromptTemplate, LLMChain
|
65 |
-
from langchain.llms import HuggingFacePipeline
|
66 |
-
|
67 |
-
# template for an instrution with no input
|
68 |
-
prompt = PromptTemplate(
|
69 |
-
input_variables=["instruction"],
|
70 |
-
template="{instruction}")
|
71 |
-
|
72 |
-
# template for an instruction with input
|
73 |
-
prompt_with_context = PromptTemplate(
|
74 |
-
input_variables=["instruction", "context"],
|
75 |
-
template="{instruction}\n\nInput:\n{context}")
|
76 |
-
|
77 |
-
hf_pipeline = HuggingFacePipeline(pipeline=generate_text)
|
78 |
-
|
79 |
-
llm_chain = LLMChain(llm=hf_pipeline, prompt=prompt)
|
80 |
-
llm_context_chain = LLMChain(llm=hf_pipeline, prompt=prompt_with_context)
|
81 |
-
```
|
82 |
-
|
83 |
-
Example predicting using a simple instruction:
|
84 |
|
85 |
-
|
86 |
-
print(
|
87 |
-
```
|
88 |
-
|
89 |
-
Example predicting using an instruction with context:
|
90 |
-
|
91 |
-
```
|
92 |
-
context = """Model A: AUC=0.8
|
93 |
-
Model from Driverless AI: AUC=0.95
|
94 |
-
Model C: AUC=0.6
|
95 |
-
Model D: AUC=0.7
|
96 |
-
"""
|
97 |
-
|
98 |
-
print(llm_context_chain.predict(instruction="Which model performs best?", context=context).lstrip())
|
99 |
```
|
100 |
|
101 |
## Model Architecture
|
|
|
28 |
from transformers import pipeline
|
29 |
|
30 |
generate_text = pipeline(model="h2oai/h2ogpt-oasst1-512-12b", torch_dtype=torch.bfloat16, trust_remote_code=True, device_map="auto")
|
31 |
+
|
32 |
+
res = generate_text("Why is drinking water so healthy?", max_new_tokens=100)
|
33 |
print(res[0]["generated_text"])
|
34 |
```
|
35 |
|
|
|
40 |
import torch
|
41 |
from h2oai_pipeline import H2OTextGenerationPipeline
|
42 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
|
|
43 |
|
44 |
+
tokenizer = AutoTokenizer.from_pretrained("h2oai/h2ogpt-oasst1-512-12b", padding_side="left")
|
45 |
+
model = AutoModelForCausalLM.from_pretrained("h2oai/h2ogpt-oasst1-512-12b", torch_dtype=torch.bfloat16, device_map="auto")
|
46 |
generate_text = H2OTextGenerationPipeline(model=model, tokenizer=tokenizer)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
+
res = generate_text("Why is drinking water so healthy?", max_new_tokens=100)
|
49 |
+
print(res[0]["generated_text"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
```
|
51 |
|
52 |
## Model Architecture
|