Upload code
Browse files- modeling_prot2text.py +17 -228
- utils.py +1 -157
modeling_prot2text.py
CHANGED
@@ -1,88 +1,16 @@
|
|
1 |
from transformers import GPT2Config, AutoTokenizer, GPT2Config
|
2 |
from transformers import PretrainedConfig, PreTrainedModel
|
3 |
import transformers
|
4 |
-
from typing import Optional, Tuple, Callable
|
5 |
import torch
|
6 |
import torch.nn as nn
|
7 |
from transformers.modeling_utils import PreTrainedModel, PretrainedConfig
|
8 |
from .utils import CABlock, _GPT2LMHeadModel
|
9 |
from .configuration_prot2text import Prot2TextConfig
|
10 |
-
import os
|
11 |
-
import numpy as np
|
12 |
from transformers.generation.configuration_utils import GenerationConfig
|
13 |
from transformers.generation.logits_process import LogitsProcessorList
|
14 |
from transformers.generation.stopping_criteria import StoppingCriteriaList
|
15 |
|
16 |
-
from .pdb2graph import PDB2Graph, download_alphafold_structure
|
17 |
-
from .graphs import *
|
18 |
-
from .utils_dataset import *
|
19 |
-
|
20 |
-
try:
|
21 |
-
from graphein.protein.config import ProteinGraphConfig, DSSPConfig
|
22 |
-
from graphein.protein.features.nodes.amino_acid import amino_acid_one_hot, meiler_embedding, expasy_protein_scale, hydrogen_bond_acceptor, hydrogen_bond_donor
|
23 |
-
from graphein.protein.features.nodes.dssp import phi, psi, asa, rsa, secondary_structure
|
24 |
-
from graphein.protein.edges.distance import (add_peptide_bonds,
|
25 |
-
add_hydrogen_bond_interactions,
|
26 |
-
add_distance_threshold,
|
27 |
-
)
|
28 |
-
except ImportError:
|
29 |
-
raise Exception('You need to install graphein from source in addition to DSSP to use this model please refer to https://github.com/a-r-j/graphein and https://ssbio.readthedocs.io/en/latest/instructions/dssp.html')
|
30 |
-
|
31 |
-
try:
|
32 |
-
from torch_geometric.nn import RGCNConv, global_mean_pool
|
33 |
-
except ImportError:
|
34 |
-
raise Exception('You need to install torch geometric and its dependecies to use this model please refer to https://pytorch-geometric.readthedocs.io/en/latest/install/installation.html')
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
class EncoderRGCN(PreTrainedModel):
|
39 |
-
'''
|
40 |
-
This class implement the RGCN encoder to encode the protein structure
|
41 |
-
'''
|
42 |
-
def __init__(self, input_dim, hidden_dim=512, n_layers=6, emb_dim=512, dropout=0.2, num_relation=7, prot2text_version='1.0'):
|
43 |
-
super(EncoderRGCN, self).__init__(PretrainedConfig(name='RGCN'))
|
44 |
-
self.n_layers = n_layers
|
45 |
-
self.output_dim = emb_dim
|
46 |
-
self.prot2text_version = prot2text_version
|
47 |
-
|
48 |
-
self.fc0 = nn.Linear(input_dim, hidden_dim)
|
49 |
-
self.batchnorm_final = nn.BatchNorm1d(hidden_dim)
|
50 |
-
|
51 |
-
self.batch_norms = nn.ModuleList()
|
52 |
-
self.batch_norms.append(nn.BatchNorm1d(hidden_dim))
|
53 |
-
lst = list()
|
54 |
-
|
55 |
-
lst.append(RGCNConv(hidden_dim, hidden_dim, num_relations=num_relation))
|
56 |
-
|
57 |
-
for i in range(n_layers-1):
|
58 |
-
lst.append(RGCNConv(hidden_dim,hidden_dim, num_relations=num_relation))
|
59 |
-
|
60 |
-
self.conv = nn.ModuleList(lst)
|
61 |
-
|
62 |
-
self.fc1 = nn.Linear(hidden_dim, hidden_dim)
|
63 |
-
self.fc2 = nn.Linear(hidden_dim, self.output_dim)
|
64 |
-
|
65 |
-
self.dropout = nn.Dropout(p=dropout)
|
66 |
-
self.relu = nn.LeakyReLU()
|
67 |
-
self.batchnorm = nn.BatchNorm1d(hidden_dim)
|
68 |
-
self.main_input_name = 'nothing'
|
69 |
-
|
70 |
-
def forward(self, x:Optional[torch.FloatTensor] = None,
|
71 |
-
edge_index:Optional[torch.LongTensor] = None,
|
72 |
-
edge_type:Optional[torch.LongTensor] = None,
|
73 |
-
batch:Optional[torch.LongTensor] = None,
|
74 |
-
**kargs):
|
75 |
-
#construct pyg edge index shape (2, num_edges) from edge_list
|
76 |
-
x = self.relu(self.fc0(x))
|
77 |
-
|
78 |
-
for i in range(self.n_layers):
|
79 |
-
x = self.conv[i](x, edge_index, edge_type)
|
80 |
-
|
81 |
-
out = global_mean_pool(x, batch)
|
82 |
-
out = self.relu(self.fc1(out))
|
83 |
-
out = self.relu(self.fc2(out))
|
84 |
-
|
85 |
-
return out.unsqueeze(1)
|
86 |
|
87 |
class Prot2TextModel(PreTrainedModel):
|
88 |
config_class = Prot2TextConfig
|
@@ -92,10 +20,6 @@ class Prot2TextModel(PreTrainedModel):
|
|
92 |
super().__init__(config)
|
93 |
|
94 |
self.gpt_config = GPT2Config.from_dict(config.gpt_config)
|
95 |
-
|
96 |
-
# if we are using RGCN to encode the protein's structure, define the RGCN encoder
|
97 |
-
if config.rgcn:
|
98 |
-
self.encoder = EncoderRGCN(input_dim=config.rgcn_input_dim, hidden_dim=self.gpt_config.n_embd, n_layers=config.rgcn_n_layers, emb_dim=self.gpt_config.n_embd, prot2text_version=self.config.prot2text_version)
|
99 |
|
100 |
# define the GPT2 decoder
|
101 |
self.decoder = _GPT2LMHeadModel(self.gpt_config)
|
@@ -164,10 +88,6 @@ class Prot2TextModel(PreTrainedModel):
|
|
164 |
if decoder_input_ids is not None and len(decoder_input_ids.size()) == 3:
|
165 |
decoder_input_ids = decoder_input_ids.squeeze(0)
|
166 |
|
167 |
-
if x is not None and self.config.rgcn:
|
168 |
-
graph_emb = self.encoder(x, edge_index, edge_type, batch)
|
169 |
-
graph_mask = None
|
170 |
-
|
171 |
if self.config.esm:
|
172 |
if self.config.prot2text_version=='1.0':
|
173 |
if encoder_input_ids.size()[1] != 1021:
|
@@ -175,38 +95,7 @@ class Prot2TextModel(PreTrainedModel):
|
|
175 |
|
176 |
esm_emb = self.esm(input_ids=encoder_input_ids, attention_mask=attention_mask, return_dict=return_dict).last_hidden_state
|
177 |
esm_emb = self.to_embedding(esm_emb)
|
178 |
-
|
179 |
-
graph_emb = torch.cat((graph_emb, esm_emb), dim=1)
|
180 |
-
t_add = torch.ones((attention_mask.size(0), 1)).to(attention_mask.get_device())
|
181 |
-
attention_mask = torch.cat((t_add, attention_mask), dim=1)
|
182 |
-
elif self.config.cross_esm_graph and self.config.rgcn:
|
183 |
-
if past_key_values_graph_esm is None:
|
184 |
-
past_length = 0
|
185 |
-
past_key_values_graph_esm = tuple([None] * len(self.h))
|
186 |
-
else:
|
187 |
-
past_length = past_key_values_graph_esm[0][0].size(-2)
|
188 |
-
output_shape = esm_emb.size()
|
189 |
-
|
190 |
-
all_self_attentions = () if output_attentions else None
|
191 |
-
all_cross_attentions = () if output_attentions and self.gpt_config.add_cross_attention else None
|
192 |
-
all_hidden_states = () if output_hidden_states else None
|
193 |
-
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values_graph_esm)):
|
194 |
-
outputs = block(
|
195 |
-
esm_emb,
|
196 |
-
layer_past=layer_past,
|
197 |
-
attention_mask=attention_mask,
|
198 |
-
encoder_hidden_states=graph_emb,
|
199 |
-
encoder_attention_mask=graph_mask,
|
200 |
-
use_cache=use_cache,
|
201 |
-
output_attentions=False,
|
202 |
-
)
|
203 |
-
esm_emb = outputs[0]
|
204 |
-
|
205 |
-
esm_emb = self.ln_f(esm_emb)
|
206 |
-
esm_emb = esm_emb.view(output_shape)
|
207 |
-
graph_emb = esm_emb
|
208 |
-
else:
|
209 |
-
graph_emb = esm_emb
|
210 |
else:
|
211 |
attention_mask = None
|
212 |
if self.config.prot2text_version=='1.0':
|
@@ -234,11 +123,7 @@ class Prot2TextModel(PreTrainedModel):
|
|
234 |
|
235 |
@torch.no_grad()
|
236 |
def generate_protein_description(self,
|
237 |
-
protein_pdbID=None,
|
238 |
protein_sequence=None,
|
239 |
-
edge_index: Optional[torch.LongTensor] = None,
|
240 |
-
x: Optional[torch.FloatTensor] = None,
|
241 |
-
edge_type: Optional[torch.LongTensor] = None,
|
242 |
tokenizer=None,
|
243 |
device='cpu'
|
244 |
):
|
@@ -247,120 +132,24 @@ class Prot2TextModel(PreTrainedModel):
|
|
247 |
raise ValueError(
|
248 |
"The model you are trying to use is based only on protein sequence, please provide an amino-acid protein_sequence"
|
249 |
)
|
250 |
-
if self.config.rgcn and protein_pdbID==None and (x==None or edge_index==None or edge_type==None):
|
251 |
-
raise ValueError(
|
252 |
-
"The model you are trying to use is based on protein structure, please provide a AlphaFold ID (you must have to have internet connection using protein_pdbID, or provide the triplet inputs: x (node features), edge_index and edge_type"
|
253 |
-
)
|
254 |
if self.config.esm:
|
255 |
esmtokenizer = AutoTokenizer.from_pretrained(self.config.esm_model_name)
|
256 |
-
|
257 |
-
if protein_pdbID==None and protein_sequence==None:
|
258 |
-
raise ValueError(
|
259 |
-
"you need to provide either a protein AlphaFold Id or an amino-acid sequence"
|
260 |
-
)
|
261 |
-
|
262 |
-
if protein_pdbID!=None:
|
263 |
-
config = {"node_metadata_functions": [amino_acid_one_hot,
|
264 |
-
expasy_protein_scale,
|
265 |
-
meiler_embedding,
|
266 |
-
hydrogen_bond_acceptor, hydrogen_bond_donor
|
267 |
-
],
|
268 |
-
"edge_construction_functions": [add_peptide_bonds,
|
269 |
-
add_hydrogen_bond_interactions,
|
270 |
-
partial(add_distance_threshold, long_interaction_threshold=3, threshold=10.),],
|
271 |
-
"graph_metadata_functions":[asa,phi, psi, secondary_structure, rsa],
|
272 |
-
"dssp_config": DSSPConfig()}
|
273 |
-
config = ProteinGraphConfig(**config)
|
274 |
-
|
275 |
-
PATH_TO_DATA = f"~/.tmp/pdb/pdb"
|
276 |
-
OUTPUT_FOLDER = f"~/.tmp/pdb/raw"
|
277 |
-
save_dir = f"~/.tmp/pdb/"
|
278 |
-
isExist = os.path.exists(PATH_TO_DATA)
|
279 |
-
if not isExist:
|
280 |
-
os.makedirs(PATH_TO_DATA)
|
281 |
-
isExist = os.path.exists(OUTPUT_FOLDER)
|
282 |
-
if not isExist:
|
283 |
-
os.makedirs(OUTPUT_FOLDER)
|
284 |
-
isExist = os.path.exists(save_dir+'processed')
|
285 |
-
if not isExist:
|
286 |
-
os.makedirs(save_dir+'processed')
|
287 |
-
|
288 |
-
structure_filename = download_alphafold_structure(uniprot_id=protein_pdbID, out_dir=PATH_TO_DATA)
|
289 |
-
if structure_filename is None:
|
290 |
-
raise ValueError("Error! the ID does not exist in AlphaFoldDB or you do not have internet connection")
|
291 |
-
graph_filename = structure_filename.split('/')
|
292 |
-
graph_filename[-2] = 'raw'
|
293 |
-
graph_filename[-1] = graph_filename[-1].replace('.pdb', '.pt')
|
294 |
-
graph_filename = '/'.join(graph_filename)
|
295 |
-
process_filename = structure_filename.split('/')
|
296 |
-
process_filename[-2] = 'processed'
|
297 |
-
process_filename[-1] = process_filename[-1].replace('.pdb', '.pt')
|
298 |
-
process_filename = '/'.join(process_filename)
|
299 |
-
try:
|
300 |
-
gpdb = PDB2Graph(root = PATH_TO_DATA, output_folder = OUTPUT_FOLDER, config=config, n_processors=1).create_pyg_graph(structure_filename)
|
301 |
-
seq = esmtokenizer(gpdb.sequence, add_special_tokens=True, truncation=True, max_length=1021, padding='max_length',return_tensors="pt") #
|
302 |
-
torch.save(gpdb, graph_filename)
|
303 |
-
gpdb.edge_type = [np.array(gpdb.edge_type.transpose(0,1))]
|
304 |
-
gpdb.encoder_input_ids = seq['input_ids']
|
305 |
-
gpdb.attention_mask = seq['attention_mask']
|
306 |
-
torch.save(gpdb, process_filename)
|
307 |
-
except:
|
308 |
-
os.remove(structure_filename)
|
309 |
-
raise ValueError('creating graphs did not work, probably the pdb file of alphaFold is damaged')
|
310 |
-
|
311 |
-
self.eval()
|
312 |
-
inputs = gpdb
|
313 |
-
inputs = inputs.to_dict()
|
314 |
-
|
315 |
-
inputs['edge_type'] = torch.cat([torch.tensor(inputs['edge_type'][i]) for i in range(len(inputs['edge_type']))], dim=0)
|
316 |
-
inputs['edge_type'] = torch.argmax(inputs['edge_type'], dim=1)
|
317 |
-
for key in ['num_nodes', 'node_id', 'name', 'sequence', 'distance_matrix', 'distance', 'coordinates']:
|
318 |
-
inputs.pop(key)
|
319 |
-
inputs['decoder_input_ids'] = inputs['encoder_input_ids'][:,0:1].clone()
|
320 |
-
inputs['decoder_input_ids'][:,0] = tokenizer.bos_token_id
|
321 |
-
inputs["decoder_attention_mask"] = torch.ones(inputs['decoder_input_ids'].shape[0], 1)
|
322 |
-
self.to(device)
|
323 |
-
inputs = {k: v.to(device=device, non_blocking=True) if hasattr(v, 'to') else v for k, v in inputs.items()}
|
324 |
-
encoder_state = dict()
|
325 |
-
encoder_state['hidden_states'] = self(**inputs, get_graph_emb=True, output_attentions=True)
|
326 |
-
encoder_state['attentions'] = inputs['attention_mask']
|
327 |
-
for key in ['edge_index', 'edge_type', 'x', 'encoder_input_ids']:
|
328 |
-
inputs.pop(key)
|
329 |
-
tok_ids = self.decoder.generate(input_ids=inputs['decoder_input_ids'],
|
330 |
-
encoder_outputs=encoder_state,
|
331 |
-
use_cache=True,
|
332 |
-
output_attentions=False,
|
333 |
-
output_scores=False,
|
334 |
-
return_dict_in_generate=True,
|
335 |
-
encoder_attention_mask=inputs['attention_mask'],
|
336 |
-
length_penalty=1.0,
|
337 |
-
no_repeat_ngram_size=None,
|
338 |
-
early_stopping=False,
|
339 |
-
num_beams=1)
|
340 |
-
|
341 |
-
generated = tokenizer.batch_decode(tok_ids.get('sequences'), skip_special_tokens=True)
|
342 |
-
|
343 |
-
os.remove(structure_filename)
|
344 |
-
os.remove(graph_filename)
|
345 |
-
os.remove(process_filename)
|
346 |
-
|
347 |
-
return generated[0].replace('<|stop_token|>', '').replace('<|graph_token|>', '')
|
348 |
-
|
349 |
-
else:
|
350 |
-
seq = esmtokenizer([protein_sequence], add_special_tokens=True, truncation=True, max_length=1021, padding='max_length', return_tensors="pt")
|
351 |
-
inputs={}
|
352 |
-
inputs['encoder_input_ids'] = seq['input_ids']
|
353 |
-
inputs['attention_mask'] = seq['attention_mask']
|
354 |
-
inputs['decoder_input_ids'] = inputs['encoder_input_ids'][:,0:1].clone()
|
355 |
-
inputs['decoder_input_ids'][:,0] = tokenizer.bos_token_id
|
356 |
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
364 |
|
365 |
@torch.no_grad()
|
366 |
def generate(self,
|
|
|
1 |
from transformers import GPT2Config, AutoTokenizer, GPT2Config
|
2 |
from transformers import PretrainedConfig, PreTrainedModel
|
3 |
import transformers
|
4 |
+
from typing import Optional, Tuple, Callable, List
|
5 |
import torch
|
6 |
import torch.nn as nn
|
7 |
from transformers.modeling_utils import PreTrainedModel, PretrainedConfig
|
8 |
from .utils import CABlock, _GPT2LMHeadModel
|
9 |
from .configuration_prot2text import Prot2TextConfig
|
|
|
|
|
10 |
from transformers.generation.configuration_utils import GenerationConfig
|
11 |
from transformers.generation.logits_process import LogitsProcessorList
|
12 |
from transformers.generation.stopping_criteria import StoppingCriteriaList
|
13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
class Prot2TextModel(PreTrainedModel):
|
16 |
config_class = Prot2TextConfig
|
|
|
20 |
super().__init__(config)
|
21 |
|
22 |
self.gpt_config = GPT2Config.from_dict(config.gpt_config)
|
|
|
|
|
|
|
|
|
23 |
|
24 |
# define the GPT2 decoder
|
25 |
self.decoder = _GPT2LMHeadModel(self.gpt_config)
|
|
|
88 |
if decoder_input_ids is not None and len(decoder_input_ids.size()) == 3:
|
89 |
decoder_input_ids = decoder_input_ids.squeeze(0)
|
90 |
|
|
|
|
|
|
|
|
|
91 |
if self.config.esm:
|
92 |
if self.config.prot2text_version=='1.0':
|
93 |
if encoder_input_ids.size()[1] != 1021:
|
|
|
95 |
|
96 |
esm_emb = self.esm(input_ids=encoder_input_ids, attention_mask=attention_mask, return_dict=return_dict).last_hidden_state
|
97 |
esm_emb = self.to_embedding(esm_emb)
|
98 |
+
graph_emb = esm_emb
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
else:
|
100 |
attention_mask = None
|
101 |
if self.config.prot2text_version=='1.0':
|
|
|
123 |
|
124 |
@torch.no_grad()
|
125 |
def generate_protein_description(self,
|
|
|
126 |
protein_sequence=None,
|
|
|
|
|
|
|
127 |
tokenizer=None,
|
128 |
device='cpu'
|
129 |
):
|
|
|
132 |
raise ValueError(
|
133 |
"The model you are trying to use is based only on protein sequence, please provide an amino-acid protein_sequence"
|
134 |
)
|
|
|
|
|
|
|
|
|
135 |
if self.config.esm:
|
136 |
esmtokenizer = AutoTokenizer.from_pretrained(self.config.esm_model_name)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
|
138 |
+
|
139 |
+
seq = esmtokenizer([protein_sequence], add_special_tokens=True, truncation=True, max_length=1021, padding='max_length', return_tensors="pt")
|
140 |
+
inputs={}
|
141 |
+
inputs['encoder_input_ids'] = seq['input_ids']
|
142 |
+
inputs['attention_mask'] = seq['attention_mask']
|
143 |
+
inputs['decoder_input_ids'] = inputs['encoder_input_ids'][:,0:1].clone()
|
144 |
+
inputs['decoder_input_ids'][:,0] = tokenizer.bos_token_id
|
145 |
+
|
146 |
+
self.to(device)
|
147 |
+
inputs = {k: v.to(device=device, non_blocking=True) if hasattr(v, 'to') else v for k, v in inputs.items()}
|
148 |
+
encoder_state = dict()
|
149 |
+
encoder_state['hidden_states'] = self(**inputs, get_graph_emb=True, output_attentions=True)
|
150 |
+
generated = tokenizer.batch_decode(self.decoder.generate(input_ids=inputs['decoder_input_ids'], encoder_outputs=encoder_state, use_cache=True), skip_special_tokens=True)
|
151 |
+
|
152 |
+
return generated[0].replace('<|stop_token|>', '').replace('<|graph_token|>', '')
|
153 |
|
154 |
@torch.no_grad()
|
155 |
def generate(self,
|
utils.py
CHANGED
@@ -1,8 +1,7 @@
|
|
1 |
import torch.nn as nn
|
2 |
from transformers.models.gpt2.modeling_gpt2 import GPT2Attention, GPT2MLP
|
3 |
from typing import Optional, Tuple, Union, Any, Dict, List
|
4 |
-
from transformers import
|
5 |
-
from torch.utils.data.distributed import DistributedSampler
|
6 |
import torch
|
7 |
from transformers.deepspeed import is_deepspeed_zero3_enabled
|
8 |
from transformers.generation.logits_process import LogitsProcessorList
|
@@ -10,11 +9,6 @@ from transformers.generation.stopping_criteria import StoppingCriteriaList
|
|
10 |
from transformers.generation.utils import GreedySearchOutput, GreedySearchEncoderDecoderOutput, BeamSearchOutput, BeamSearchEncoderDecoderOutput
|
11 |
from transformers.generation.beam_search import BeamScorer
|
12 |
|
13 |
-
try:
|
14 |
-
from torch_geometric.loader import DataLoader
|
15 |
-
from torch_geometric.data import Dataset
|
16 |
-
except ImportError:
|
17 |
-
raise Exception('You need to install torch geometric and its dependecies to use this model please refer to https://pytorch-geometric.readthedocs.io/en/latest/install/installation.html')
|
18 |
|
19 |
class _GPT2LMHeadModel(GPT2LMHeadModel):
|
20 |
def _init_(self, config):
|
@@ -593,153 +587,3 @@ class CABlock(nn.Module):
|
|
593 |
|
594 |
return (hidden_states,)
|
595 |
|
596 |
-
class Prot2TextTrainer(Seq2SeqTrainer):
|
597 |
-
'''
|
598 |
-
This function is an edited version of the Seq2SeqTrainer from HuggingFace's transformers
|
599 |
-
'''
|
600 |
-
def get_eval_dataloader(self, eval_dataset: Optional[Dataset] = None) -> DataLoader:
|
601 |
-
if self.args.world_size > 1:
|
602 |
-
eval_sampler = DistributedSampler(self.eval_dataset, num_replicas=self.args.world_size, rank=self.args.process_index)
|
603 |
-
else:
|
604 |
-
eval_sampler = None
|
605 |
-
return DataLoader(
|
606 |
-
self.eval_dataset,
|
607 |
-
batch_size=self.args.eval_batch_size,
|
608 |
-
collate_fn=None,
|
609 |
-
num_workers=self.args.dataloader_num_workers,
|
610 |
-
pin_memory=self.args.dataloader_pin_memory,
|
611 |
-
sampler=eval_sampler,
|
612 |
-
)
|
613 |
-
def get_train_dataloader(self) -> DataLoader:
|
614 |
-
if self.args.world_size > 1:
|
615 |
-
train_sampler = DistributedSampler(self.train_dataset, num_replicas=self.args.world_size, rank=self.args.process_index)
|
616 |
-
else:
|
617 |
-
train_sampler = None
|
618 |
-
return DataLoader(
|
619 |
-
self.train_dataset,
|
620 |
-
batch_size=self.args.per_device_train_batch_size,
|
621 |
-
collate_fn=None,
|
622 |
-
num_workers=self.args.dataloader_num_workers,
|
623 |
-
pin_memory=self.args.dataloader_pin_memory,
|
624 |
-
sampler=train_sampler,
|
625 |
-
)
|
626 |
-
def _prepare_inputs(self, inputs: Dict[str, Union[torch.Tensor, Any]]) -> Dict[str, Union[torch.Tensor, Any]]:
|
627 |
-
"""
|
628 |
-
Prepare `inputs` before feeding them to the model, converting them to tensors if they are not already and
|
629 |
-
handling potential state.
|
630 |
-
"""
|
631 |
-
inputs = self._prepare_input(inputs)
|
632 |
-
if len(inputs) == 0:
|
633 |
-
raise ValueError(
|
634 |
-
"The batch received was empty, your model won't be able to train on it. Double-check that your "
|
635 |
-
f"training dataset contains keys expected by the model: {','.join(self._signature_columns)}."
|
636 |
-
)
|
637 |
-
if self.args.past_index >= 0 and self._past is not None:
|
638 |
-
inputs["mems"] = self._past
|
639 |
-
|
640 |
-
inputs = inputs.to_dict()
|
641 |
-
inputs['edge_type'] = torch.cat([torch.tensor(inputs['edge_type'][i]) for i in range(len(inputs['edge_type']))], dim=0)
|
642 |
-
inputs['edge_type'] = torch.argmax(inputs['edge_type'], dim=1)
|
643 |
-
inputs = {k: v.to(device=self.args.device, non_blocking=True) if hasattr(v, 'to') else v for k, v in inputs.items()}
|
644 |
-
return inputs
|
645 |
-
|
646 |
-
def prediction_step(
|
647 |
-
self,
|
648 |
-
model: nn.Module,
|
649 |
-
inputs: Dict[str, Union[torch.Tensor, Any]],
|
650 |
-
prediction_loss_only: bool,
|
651 |
-
ignore_keys: Optional[List[str]] = None,
|
652 |
-
) -> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]:
|
653 |
-
"""
|
654 |
-
Perform an evaluation step on `model` using `inputs`.
|
655 |
-
|
656 |
-
Subclass and override to inject custom behavior.
|
657 |
-
|
658 |
-
Args:
|
659 |
-
model (`nn.Module`):
|
660 |
-
The model to evaluate.
|
661 |
-
inputs (`Dict[str, Union[torch.Tensor, Any]]`):
|
662 |
-
The inputs and targets of the model.
|
663 |
-
|
664 |
-
The dictionary will be unpacked before being fed to the model. Most models expect the targets under the
|
665 |
-
argument `labels`. Check your model's documentation for all accepted arguments.
|
666 |
-
prediction_loss_only (`bool`):
|
667 |
-
Whether or not to return the loss only.
|
668 |
-
|
669 |
-
Return:
|
670 |
-
Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]: A tuple with the loss, logits and
|
671 |
-
labels (each being optional).
|
672 |
-
"""
|
673 |
-
|
674 |
-
if not self.args.predict_with_generate or prediction_loss_only:
|
675 |
-
return super().prediction_step(
|
676 |
-
model, inputs, prediction_loss_only=prediction_loss_only, ignore_keys=ignore_keys
|
677 |
-
)
|
678 |
-
|
679 |
-
has_labels = "labels" in inputs
|
680 |
-
inputs = self._prepare_inputs(inputs)
|
681 |
-
|
682 |
-
# XXX: adapt synced_gpus for fairscale as well
|
683 |
-
gen_kwargs = self._gen_kwargs.copy()
|
684 |
-
if gen_kwargs.get("max_length") is None and gen_kwargs.get("max_new_tokens") is None:
|
685 |
-
gen_kwargs["max_length"] = self.model.config.max_length
|
686 |
-
gen_kwargs["num_beams"] = (
|
687 |
-
gen_kwargs["num_beams"] if gen_kwargs.get("num_beams") is not None else self.model.config.num_beams
|
688 |
-
)
|
689 |
-
default_synced_gpus = True if is_deepspeed_zero3_enabled() else False
|
690 |
-
gen_kwargs["synced_gpus"] = (
|
691 |
-
gen_kwargs["synced_gpus"] if gen_kwargs.get("synced_gpus") is not None else default_synced_gpus
|
692 |
-
)
|
693 |
-
|
694 |
-
if "attention_mask" in inputs:
|
695 |
-
gen_kwargs["attention_mask"] = inputs.get("attention_mask", None)
|
696 |
-
if "global_attention_mask" in inputs:
|
697 |
-
gen_kwargs["global_attention_mask"] = inputs.get("global_attention_mask", None)
|
698 |
-
|
699 |
-
generation_inputs = None
|
700 |
-
gen_kwargs['x'] = inputs.get('x', None)
|
701 |
-
gen_kwargs['edge_index'] = inputs.get('edge_index', None)
|
702 |
-
gen_kwargs['edge_type'] = inputs.get('edge_type', None)
|
703 |
-
gen_kwargs['batch'] = inputs.get('batch', None)
|
704 |
-
gen_kwargs['encoder_input_ids'] = inputs.get('encoder_input_ids', None)
|
705 |
-
gen_kwargs['decoder_input_ids'] = inputs.get('decoder_input_ids', None)[:,0:1]
|
706 |
-
gen_kwargs["decoder_attention_mask"] = torch.ones(gen_kwargs['decoder_input_ids'].shape[0], 1).to(self.args.device)
|
707 |
-
|
708 |
-
generated_tokens = self.model.generate(
|
709 |
-
generation_inputs,
|
710 |
-
**gen_kwargs,
|
711 |
-
)
|
712 |
-
# in case the batch is shorter than max length, the output should be padded
|
713 |
-
if gen_kwargs.get("max_length") is not None and generated_tokens.shape[-1] < gen_kwargs["max_length"]:
|
714 |
-
generated_tokens = self._pad_tensors_to_max_len(generated_tokens, gen_kwargs["max_length"])
|
715 |
-
elif gen_kwargs.get("max_new_tokens") is not None and generated_tokens.shape[-1] < (
|
716 |
-
gen_kwargs["max_new_tokens"] + 1
|
717 |
-
):
|
718 |
-
generated_tokens = self._pad_tensors_to_max_len(generated_tokens, gen_kwargs["max_new_tokens"] + 1)
|
719 |
-
|
720 |
-
with torch.no_grad():
|
721 |
-
if has_labels:
|
722 |
-
with self.compute_loss_context_manager():
|
723 |
-
outputs = model(**inputs)
|
724 |
-
if self.label_smoother is not None:
|
725 |
-
loss = self.label_smoother(outputs, inputs["labels"]).mean().detach()
|
726 |
-
else:
|
727 |
-
loss = (outputs["loss"] if isinstance(outputs, dict) else outputs[0]).mean().detach()
|
728 |
-
else:
|
729 |
-
loss = None
|
730 |
-
|
731 |
-
if self.args.prediction_loss_only:
|
732 |
-
return (loss, None, None)
|
733 |
-
|
734 |
-
if has_labels:
|
735 |
-
labels = inputs["labels"]
|
736 |
-
if gen_kwargs.get("max_length") is not None and labels.shape[-1] < gen_kwargs["max_length"]:
|
737 |
-
labels = self._pad_tensors_to_max_len(labels, gen_kwargs["max_length"])
|
738 |
-
elif gen_kwargs.get("max_new_tokens") is not None and labels.shape[-1] < (
|
739 |
-
gen_kwargs["max_new_tokens"] + 1
|
740 |
-
):
|
741 |
-
labels = self._pad_tensors_to_max_len(labels, (gen_kwargs["max_new_tokens"] + 1))
|
742 |
-
else:
|
743 |
-
labels = None
|
744 |
-
|
745 |
-
return (loss, generated_tokens, labels)
|
|
|
1 |
import torch.nn as nn
|
2 |
from transformers.models.gpt2.modeling_gpt2 import GPT2Attention, GPT2MLP
|
3 |
from typing import Optional, Tuple, Union, Any, Dict, List
|
4 |
+
from transformers import GPT2LMHeadModel
|
|
|
5 |
import torch
|
6 |
from transformers.deepspeed import is_deepspeed_zero3_enabled
|
7 |
from transformers.generation.logits_process import LogitsProcessorList
|
|
|
9 |
from transformers.generation.utils import GreedySearchOutput, GreedySearchEncoderDecoderOutput, BeamSearchOutput, BeamSearchEncoderDecoderOutput
|
10 |
from transformers.generation.beam_search import BeamScorer
|
11 |
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
class _GPT2LMHeadModel(GPT2LMHeadModel):
|
14 |
def _init_(self, config):
|
|
|
587 |
|
588 |
return (hidden_states,)
|
589 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|