File size: 2,635 Bytes
05433ff
 
c23a60c
05433ff
 
 
c23a60c
05433ff
 
 
 
 
 
c23a60c
05433ff
c23a60c
05433ff
c23a60c
05433ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c23a60c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05433ff
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
---
license: mit
base_model: microsoft/deberta-v3-base
tags:
- generated_from_trainer
model-index:
- name: deberta-v3-base-kaggle-mlm
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# deberta-v3-base-kaggle-mlm

This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.5600

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 25
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step   | Validation Loss |
|:-------------:|:-----:|:------:|:---------------:|
| 3.1466        | 1.0   | 6848   | 2.9173          |
| 2.6316        | 2.0   | 13696  | 2.4139          |
| 2.3281        | 3.0   | 20544  | 2.2020          |
| 2.2122        | 4.0   | 27392  | 2.0776          |
| 2.0794        | 5.0   | 34240  | 1.9780          |
| 2.0299        | 6.0   | 41088  | 1.8861          |
| 1.9629        | 7.0   | 47936  | 1.8213          |
| 1.9001        | 8.0   | 54784  | 1.7946          |
| 1.8508        | 9.0   | 61632  | 1.7551          |
| 1.8157        | 10.0  | 68480  | 1.7485          |
| 1.7815        | 11.0  | 75328  | 1.7100          |
| 1.7423        | 12.0  | 82176  | 1.6970          |
| 1.7318        | 13.0  | 89024  | 1.6813          |
| 1.7173        | 14.0  | 95872  | 1.6493          |
| 1.6902        | 15.0  | 102720 | 1.6243          |
| 1.7002        | 16.0  | 109568 | 1.6313          |
| 1.6714        | 17.0  | 116416 | 1.6181          |
| 1.6605        | 18.0  | 123264 | 1.6026          |
| 1.6331        | 19.0  | 130112 | 1.5825          |
| 1.6143        | 20.0  | 136960 | 1.5903          |
| 1.6136        | 21.0  | 143808 | 1.5812          |
| 1.6151        | 22.0  | 150656 | 1.5708          |
| 1.6122        | 23.0  | 157504 | 1.5806          |
| 1.6025        | 24.0  | 164352 | 1.5492          |
| 1.614         | 25.0  | 171200 | 1.5555          |


### Framework versions

- Transformers 4.41.2
- Pytorch 2.3.1+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1