|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" EncT5 model configuration""" |
|
|
|
from transformers.configuration_utils import PretrainedConfig |
|
|
|
|
|
class EncT5Config(PretrainedConfig): |
|
r""" |
|
This is the configuration class to store the configuration of a [`EncT5`]. It is used to instantiate a EncT5 model |
|
according to the specified arguments, defining the model architecture. Instantiating a configuration with the |
|
defaults will yield a similar configuration to that of the T5 [t5-small](https://huggingface.co/t5-small) |
|
architecture. |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
Arguments: |
|
vocab_size (`int`, *optional*, defaults to 32128): |
|
Vocabulary size of the EncT5 model. Defines the number of different tokens that can be represented by the |
|
`inputs_ids` passed when calling [`T5Model`] or [`TFT5Model`]. |
|
decoder_vocab_size (`int`, *optional*, defaults to 1): |
|
Decoder vocabulary size of the EncT5 model. For regression and single-label classification, this should just |
|
be 1 (the default). For multi-label classification, this should be the number of labels. |
|
d_model (`int`, *optional*, defaults to 512): |
|
Size of the encoder layers and the pooler layer. |
|
d_kv (`int`, *optional*, defaults to 64): |
|
Size of the key, query, value projections per attention head. The `inner_dim` of the projection layer will |
|
be defined as `num_heads * d_kv`. |
|
d_ff (`int`, *optional*, defaults to 2048): |
|
Size of the intermediate feed forward layer in each `T5Block`. |
|
num_layers (`int`, *optional*, defaults to 6): |
|
Number of hidden layers in the Transformer encoder. |
|
num_decoder_layers (`int`, *optional*, defaults to 1): |
|
Number of hidden layers in the Transformer decoder. |
|
num_heads (`int`, *optional*, defaults to 8): |
|
Number of attention heads for each attention layer in the Transformer encoder. |
|
relative_attention_num_buckets (`int`, *optional*, defaults to 32): |
|
The number of buckets to use for each attention layer. |
|
relative_attention_max_distance (`int`, *optional*, defaults to 128): |
|
The maximum distance of the longer sequences for the bucket separation. |
|
dropout_rate (`float`, *optional*, defaults to 0.1): |
|
The ratio for all dropout layers. |
|
classifier_dropout (`float`, *optional*, defaults to 0.0): |
|
The dropout ratio for classifier. |
|
layer_norm_eps (`float`, *optional*, defaults to 1e-6): |
|
The epsilon used by the layer normalization layers. |
|
initializer_factor (`float`, *optional*, defaults to 1): |
|
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization |
|
testing). |
|
feed_forward_proj (`string`, *optional*, defaults to `"relu"`): |
|
Type of feed forward layer to be used. Should be one of `"relu"` or `"gated-gelu"`. T5v1.1 uses the |
|
`"gated-gelu"` feed forward projection. Original T5 uses `"relu"`. |
|
use_cache (`bool`, *optional*, defaults to `True`): |
|
Whether or not the model should return the last key/values attentions (not used by all models). |
|
""" |
|
|
|
model_type = "enct5" |
|
keys_to_ignore_at_inference = ["past_key_values"] |
|
attribute_map = {"hidden_size": "d_model", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"} |
|
|
|
def __init__( |
|
self, |
|
vocab_size=32128, |
|
decoder_vocab_size=1, |
|
d_model=512, |
|
d_kv=64, |
|
d_ff=2048, |
|
num_layers=6, |
|
num_decoder_layers=1, |
|
num_heads=8, |
|
relative_attention_num_buckets=32, |
|
relative_attention_max_distance=128, |
|
dropout_rate=0.1, |
|
layer_norm_epsilon=1e-6, |
|
initializer_factor=1.0, |
|
feed_forward_proj="relu", |
|
is_encoder_decoder=True, |
|
use_cache=True, |
|
pad_token_id=0, |
|
eos_token_id=1, |
|
classifier_dropout=0.0, |
|
**kwargs, |
|
): |
|
self.vocab_size = vocab_size |
|
self.decoder_vocab_size = decoder_vocab_size |
|
self.d_model = d_model |
|
self.d_kv = d_kv |
|
self.d_ff = d_ff |
|
self.num_layers = num_layers |
|
self.num_decoder_layers = num_decoder_layers |
|
self.num_heads = num_heads |
|
self.relative_attention_num_buckets = relative_attention_num_buckets |
|
self.relative_attention_max_distance = relative_attention_max_distance |
|
self.dropout_rate = dropout_rate |
|
self.classifier_dropout = classifier_dropout |
|
self.layer_norm_epsilon = layer_norm_epsilon |
|
self.initializer_factor = initializer_factor |
|
self.feed_forward_proj = feed_forward_proj |
|
self.use_cache = use_cache |
|
|
|
act_info = self.feed_forward_proj.split("-") |
|
self.dense_act_fn = act_info[-1] |
|
self.is_gated_act = act_info[0] == "gated" |
|
|
|
if len(act_info) > 1 and act_info[0] != "gated" or len(act_info) > 2: |
|
raise ValueError( |
|
f"`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer. " |
|
"Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. " |
|
"'gated-gelu' or 'relu'" |
|
) |
|
|
|
|
|
if feed_forward_proj == "gated-gelu": |
|
self.dense_act_fn = "gelu_new" |
|
|
|
super().__init__( |
|
pad_token_id=pad_token_id, |
|
eos_token_id=eos_token_id, |
|
is_encoder_decoder=is_encoder_decoder, |
|
**kwargs, |
|
) |
|
|
|
|
|
self.tie_word_embeddings = False |
|
|